Phonetisaurus 开源项目教程
1. 项目介绍
Phonetisaurus 是一个用于训练、评估和使用基于 OpenFst 框架的语音识别中字素到音素模型的工具。该项目提供了 C++ 二进制文件,适用于训练、编译和评估 G2P 模型。此外,Phonetisaurus 还包括一些简单的 Python 绑定,可用于提取多字节分数、对齐和转储每个单词的原始格子(lattice)。
Phonetisaurus 的主要功能包括:
- 训练 G2P 模型
- 编译和评估 G2P 模型
- 提供 Python 绑定,方便用户进行高级操作
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统已经安装了以下依赖:
- Git
- G++
- Autoconf-archive
- Make
- Libtool
- Python 3.7+
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/AdolfVonKleist/Phonetisaurus.git cd Phonetisaurus -
配置和编译项目:
./configure make sudo make install -
安装 Python 绑定(可选):
sudo pip3 install pybindgen PYTHON=python3 ./configure --enable-python make sudo make install cd python cp ../libs/Phonetisaurus.so . sudo python3 setup.py install
2.3 使用示例
假设你已经有一个格式化的词典文件 lexicon.dict,你可以使用以下命令训练一个 G2P 模型:
phonetisaurus-train --lexicon lexicon.dict --seq2_del
训练完成后,你可以使用以下命令生成单词的发音:
phonetisaurus-apply --model train/model.fst --word_list test_words.list
3. 应用案例和最佳实践
3.1 语音识别系统
Phonetisaurus 可以用于构建语音识别系统中的 G2P 模块。通过训练一个高质量的 G2P 模型,可以显著提高语音识别系统的准确性。
3.2 多语言支持
Phonetisaurus 支持多种语言的 G2P 转换,适用于构建多语言语音识别系统。通过为每种语言训练独立的 G2P 模型,可以实现跨语言的语音识别。
3.3 自定义词典
用户可以根据自己的需求,使用自定义词典进行训练。这使得 Phonetisaurus 在特定领域(如医疗、法律等)的语音识别中具有很高的灵活性。
4. 典型生态项目
4.1 OpenFst
Phonetisaurus 依赖于 OpenFst 框架,OpenFst 是一个用于构建和操作加权有限状态机的库。OpenFst 提供了丰富的算法和工具,支持多种语言和平台。
4.2 Kaldi
Kaldi 是一个流行的语音识别工具包,Phonetisaurus 可以作为 Kaldi 的一个插件,用于增强其 G2P 功能。通过结合使用,可以构建一个完整的端到端语音识别系统。
4.3 CMU Sphinx
CMU Sphinx 是另一个广泛使用的语音识别系统,Phonetisaurus 可以与其集成,提供更强大的 G2P 转换能力。
通过这些生态项目的结合,Phonetisaurus 可以在各种语音识别应用中发挥重要作用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00