Python 计算机视觉 OpenCV 教学示例项目启动和配置教程
2025-05-20 02:32:25作者:齐冠琰
1. 项目目录结构及介绍
本项目包含了使用 Python 和 OpenCV 进行计算机视觉教学的各种示例。以下是项目的目录结构及其介绍:
python-examples-cv/
├── .github/ # 存放 GitHub 工作流程文件
│ └── workflows/
├── .gitignore # 指定 Git 忽略的文件和目录
├── DoG.py # 使用 Difference of Gaussian 算法的示例
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── calibrate_camera.py # 摄像机标定示例
├── camera_stream.py # 摄像机流处理类
├── canny.py # Canny 边缘检测示例
├── chromaticity_lightness.py # 色彩和亮度处理示例
├── cnn_ssd_detection.py # 基于卷积神经网络的目标检测示例
├── contour_edges.py # 边缘轮廓检测示例
├── cycleimages.py # 图像循环显示示例
├── download-models.sh # 下载 CNN 模型文件的脚本
├── eigenfaces.py # 特征脸识别示例
├── faster-rcnn.py # Faster R-CNN 目标检测示例
├── fcn_segmentation.py # 全卷积网络分割示例
├── gaussian.py # 高斯模糊示例
├── generic_interface.py # 通用接口类
├── gradient_orientation.py # 梯度方向处理示例
├── haar_cascade_detection.py # Haar 级联分类器目标检测示例
├── harris.py # Harris 角点检测示例
├── hog.py # HOG 描述符示例
├── houghlines.py # Hough 变换线检测示例
├── kalman_tracking_live.py # 卡尔曼滤波实时跟踪示例
├── lbp_cascade_detection.py # LBP 级联分类器目标检测示例
├── mask-rcnn.py # Mask R-CNN 目标检测与分割示例
├── mog-background-subtraction.py # 混合高斯背景减除示例
├── openpose.py # OpenPose 人姿态估计示例
├── opticflow.py # 光流运动估计示例
├── pyramid.py # 金字塔图像处理示例
├── selective_search.py # 选择性搜索示例
├── sift_detection.py # SIFT 特征检测示例
├── sobel.py # Sobel 算子边缘检测示例
├── squeezenet.py # SqueezeNet 网络示例
├── stereo_sgbm.py # SGBM 立体视觉示例
├── test_all.sh # 测试所有示例的脚本
├── yolo.py # YOLO 目标检测示例
2. 项目的启动文件介绍
项目的启动主要是通过各个 Python 脚本文件来执行。例如,要运行 DoG.py 示例,可以在命令行中执行以下命令:
python3 DoG.py
如果需要指定视频文件作为输入,可以在命令行中输入:
python3 DoG.py video_file
每个示例脚本通常都有相应的帮助信息,可以通过 -h 参数来查看。例如:
python3 generic_interface.py -h
3. 项目的配置文件介绍
本项目中的配置主要是通过代码中的参数设置来实现的。在大多数情况下,用户可以通过修改 Python 脚本中的参数来改变程序的行为。例如,generic_interface.py 脚本支持以下参数:
-c CAMERA_TO_USE或--camera_to_use CAMERA_TO_USE:指定要使用的摄像机。-r RESCALE或--rescale RESCALE:指定图像缩放因子。
如果有需要下载的模型文件,可以通过执行 download-models.sh 脚本来下载相应的模型。在执行之前,请确保你有相应的权限来执行脚本。
以上就是开源项目 python-examples-cv 的启动和配置教程。在开始之前,请确保你的系统中已安装了 Python 和 OpenCV 库。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492