Python 计算机视觉 OpenCV 教学示例项目启动和配置教程
2025-05-20 18:08:54作者:齐冠琰
1. 项目目录结构及介绍
本项目包含了使用 Python 和 OpenCV 进行计算机视觉教学的各种示例。以下是项目的目录结构及其介绍:
python-examples-cv/
├── .github/ # 存放 GitHub 工作流程文件
│ └── workflows/
├── .gitignore # 指定 Git 忽略的文件和目录
├── DoG.py # 使用 Difference of Gaussian 算法的示例
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── calibrate_camera.py # 摄像机标定示例
├── camera_stream.py # 摄像机流处理类
├── canny.py # Canny 边缘检测示例
├── chromaticity_lightness.py # 色彩和亮度处理示例
├── cnn_ssd_detection.py # 基于卷积神经网络的目标检测示例
├── contour_edges.py # 边缘轮廓检测示例
├── cycleimages.py # 图像循环显示示例
├── download-models.sh # 下载 CNN 模型文件的脚本
├── eigenfaces.py # 特征脸识别示例
├── faster-rcnn.py # Faster R-CNN 目标检测示例
├── fcn_segmentation.py # 全卷积网络分割示例
├── gaussian.py # 高斯模糊示例
├── generic_interface.py # 通用接口类
├── gradient_orientation.py # 梯度方向处理示例
├── haar_cascade_detection.py # Haar 级联分类器目标检测示例
├── harris.py # Harris 角点检测示例
├── hog.py # HOG 描述符示例
├── houghlines.py # Hough 变换线检测示例
├── kalman_tracking_live.py # 卡尔曼滤波实时跟踪示例
├── lbp_cascade_detection.py # LBP 级联分类器目标检测示例
├── mask-rcnn.py # Mask R-CNN 目标检测与分割示例
├── mog-background-subtraction.py # 混合高斯背景减除示例
├── openpose.py # OpenPose 人姿态估计示例
├── opticflow.py # 光流运动估计示例
├── pyramid.py # 金字塔图像处理示例
├── selective_search.py # 选择性搜索示例
├── sift_detection.py # SIFT 特征检测示例
├── sobel.py # Sobel 算子边缘检测示例
├── squeezenet.py # SqueezeNet 网络示例
├── stereo_sgbm.py # SGBM 立体视觉示例
├── test_all.sh # 测试所有示例的脚本
├── yolo.py # YOLO 目标检测示例
2. 项目的启动文件介绍
项目的启动主要是通过各个 Python 脚本文件来执行。例如,要运行 DoG.py 示例,可以在命令行中执行以下命令:
python3 DoG.py
如果需要指定视频文件作为输入,可以在命令行中输入:
python3 DoG.py video_file
每个示例脚本通常都有相应的帮助信息,可以通过 -h 参数来查看。例如:
python3 generic_interface.py -h
3. 项目的配置文件介绍
本项目中的配置主要是通过代码中的参数设置来实现的。在大多数情况下,用户可以通过修改 Python 脚本中的参数来改变程序的行为。例如,generic_interface.py 脚本支持以下参数:
-c CAMERA_TO_USE或--camera_to_use CAMERA_TO_USE:指定要使用的摄像机。-r RESCALE或--rescale RESCALE:指定图像缩放因子。
如果有需要下载的模型文件,可以通过执行 download-models.sh 脚本来下载相应的模型。在执行之前,请确保你有相应的权限来执行脚本。
以上就是开源项目 python-examples-cv 的启动和配置教程。在开始之前,请确保你的系统中已安装了 Python 和 OpenCV 库。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140