GLM-4V-9B模型LoRA微调推理问题分析与解决方案
问题背景
在使用GLM-4V-9B多模态大模型进行LoRA微调后的推理过程中,开发者遇到了一个典型的错误:"ValueError: too many values to unpack (expected 2)"。这个问题出现在调用模型的generate方法时,表明输入数据的解包过程与模型预期不符。
问题分析
-
错误本质:该错误通常发生在Python尝试解包一个可迭代对象时,接收的变量数量与提供的值数量不匹配。在transformers库的上下文中,这往往意味着模型生成方法接收到的输入格式与预期不符。
-
版本兼容性:根据官方回复,这个问题与transformers库的版本有关。GLM-4V-9B模型对transformers 4.40.2版本有更好的兼容性,而使用较新的4.42.3版本可能导致接口不匹配。
-
输入处理:代码中使用tokenizer.apply_chat_template方法处理多模态输入(图像+文本),这种处理方式在不同版本的transformers中可能有不同的实现细节。
解决方案
-
降级transformers版本: 将transformers库降级到4.40.2版本可以解决兼容性问题:
pip install transformers==4.40.2
-
输入格式验证: 在降级后,建议检查输入数据的结构:
print(inputs.keys()) # 验证输入字典的键 print(inputs['input_ids'].shape) # 验证文本输入的形状 print(inputs['image_patches'].shape if 'image_patches' in inputs else None) # 验证图像输入
-
生成参数调整: 对于多模态生成任务,可以尝试更详细的生成参数:
gen_kwargs = { "max_new_tokens": 500, "temperature": 0.7, "top_p": 0.9, "do_sample": True, "num_return_sequences": 1 }
最佳实践建议
-
环境隔离:为GLM-4V-9B项目创建独立的Python环境,固定关键库的版本。
-
输入预处理:对于多模态输入,确保图像已经过适当的预处理(如调整大小、归一化等)。
-
逐步调试:先使用纯文本输入测试模型,确认基础功能正常后再加入图像模态。
-
日志记录:在关键步骤添加日志记录,帮助追踪数据流和问题定位。
-
显存管理:对于9B参数量的模型,注意监控显存使用情况,必要时使用梯度检查点或量化技术。
总结
GLM-4V-9B作为多模态大模型,在LoRA微调和推理过程中需要特别注意版本兼容性和输入格式处理。通过控制依赖版本、验证数据流和合理配置生成参数,可以有效解决这类推理过程中的值解包错误。对于大模型应用开发,保持环境的一致性和可复现性是至关重要的实践原则。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









