首页
/ GLM-4V-9B模型LoRA微调推理问题分析与解决方案

GLM-4V-9B模型LoRA微调推理问题分析与解决方案

2025-06-03 03:26:03作者:庞眉杨Will

问题背景

在使用GLM-4V-9B多模态大模型进行LoRA微调后的推理过程中,开发者遇到了一个典型的错误:"ValueError: too many values to unpack (expected 2)"。这个问题出现在调用模型的generate方法时,表明输入数据的解包过程与模型预期不符。

问题分析

  1. 错误本质:该错误通常发生在Python尝试解包一个可迭代对象时,接收的变量数量与提供的值数量不匹配。在transformers库的上下文中,这往往意味着模型生成方法接收到的输入格式与预期不符。

  2. 版本兼容性:根据官方回复,这个问题与transformers库的版本有关。GLM-4V-9B模型对transformers 4.40.2版本有更好的兼容性,而使用较新的4.42.3版本可能导致接口不匹配。

  3. 输入处理:代码中使用tokenizer.apply_chat_template方法处理多模态输入(图像+文本),这种处理方式在不同版本的transformers中可能有不同的实现细节。

解决方案

  1. 降级transformers版本: 将transformers库降级到4.40.2版本可以解决兼容性问题:

    pip install transformers==4.40.2
    
  2. 输入格式验证: 在降级后,建议检查输入数据的结构:

    print(inputs.keys())  # 验证输入字典的键
    print(inputs['input_ids'].shape)  # 验证文本输入的形状
    print(inputs['image_patches'].shape if 'image_patches' in inputs else None)  # 验证图像输入
    
  3. 生成参数调整: 对于多模态生成任务,可以尝试更详细的生成参数:

    gen_kwargs = {
        "max_new_tokens": 500,
        "temperature": 0.7,
        "top_p": 0.9,
        "do_sample": True,
        "num_return_sequences": 1
    }
    

最佳实践建议

  1. 环境隔离:为GLM-4V-9B项目创建独立的Python环境,固定关键库的版本。

  2. 输入预处理:对于多模态输入,确保图像已经过适当的预处理(如调整大小、归一化等)。

  3. 逐步调试:先使用纯文本输入测试模型,确认基础功能正常后再加入图像模态。

  4. 日志记录:在关键步骤添加日志记录,帮助追踪数据流和问题定位。

  5. 显存管理:对于9B参数量的模型,注意监控显存使用情况,必要时使用梯度检查点或量化技术。

总结

GLM-4V-9B作为多模态大模型,在LoRA微调和推理过程中需要特别注意版本兼容性和输入格式处理。通过控制依赖版本、验证数据流和合理配置生成参数,可以有效解决这类推理过程中的值解包错误。对于大模型应用开发,保持环境的一致性和可复现性是至关重要的实践原则。

登录后查看全文
热门项目推荐
相关项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8