OneDiff加速AnimateDiff-CLI-Prompt-Travel的技术实践
2025-07-07 23:19:38作者:裘旻烁
背景介绍
AnimateDiff-CLI-Prompt-Travel是一个基于Diffusers框架实现的动画生成工具,它通过自定义的UNet3DConditionModel实现了视频序列的生成。在实际应用中,我们发现其推理速度有待提升,因此尝试使用OneDiff的oneflow_compile功能对其进行加速优化。
技术挑战与解决方案
1. 自定义UNet模型的编译问题
原项目使用了自定义实现的UNet3DConditionModel,而非Diffusers官方实现。直接使用oneflow_compile会遇到算子不支持的问题。
解决方案:
- 确认OneDiff版本:从dev_comfyui_animatediff_evolved分支切换到master分支
- 确保编译环境配置正确
2. 最临近插值算子不支持问题
原代码中使用了torch.nn.functional.interpolate的最临近插值功能,这是OneDiff当前不支持的算子。
解决方案: 我们实现了自定义的最临近插值函数:
def nearest_interpolate(input_tensor, size=None, scale_factor=None):
"""
最临近插值实现
:param input_tensor: 输入张量
:param size: 目标尺寸
:param scale_factor: 缩放因子
:return: 插值后的张量
"""
new_shape = list(input_tensor.shape)
if size is not None:
for i in range(2, 2 + len(size)):
new_shape[i] = size[i - 2]
if scale_factor is not None:
for i in range(2, 2 + len(scale_factor)):
new_shape[i] = int(new_shape[i] * scale_factor[i - 2])
output_tensor = torch.zeros(new_shape, dtype=input_tensor.dtype, device=input_tensor.device.type)
index_k = (torch.arange(0, output_tensor.shape[-1]) / output_tensor.shape[-1] * input_tensor.shape[-1]).int()
index_j = (torch.arange(0, output_tensor.shape[-2]) / output_tensor.shape[-2] * input_tensor.shape[-2]).int()
index_i = (torch.arange(0, output_tensor.shape[-3]) / output_tensor.shape[-3] * input_tensor.shape[-3]).int()
output_tensor = input_tensor[:, :, index_i][:, :, :, index_j][:, :, :, :, index_k]
return output_tensor
实现要点:
- 避免使用torch.tensor()类型转换,改用.int()方法
- 采用索引方式实现插值,而非直接使用numpy转换
- 支持3D张量的插值操作
3. 其他优化技巧
- 同时对UNet和ControlNet部分进行编译优化
- 注意数据类型和设备的一致性
- 监控显存使用情况,避免因优化导致显存溢出
性能评估
经过优化后:
- 模型推理速度得到显著提升
- 自定义插值函数比原生实现慢约5倍,但整体仍带来正向收益
- 系统稳定性良好,无崩溃现象
总结与展望
通过OneDiff的编译优化,我们成功提升了AnimateDiff-CLI-Prompt-Travel的推理性能。未来可考虑:
- 进一步优化自定义算子的实现效率
- 探索更多可编译的模型组件
- 研究混合精度训练带来的额外性能提升
这种技术方案不仅适用于本项目,也可推广到其他基于Diffusers的自定义模型优化场景中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
497
3.64 K
Ascend Extension for PyTorch
Python
301
342
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
310
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
481
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882