OneDiff加速AnimateDiff-CLI-Prompt-Travel的技术实践
2025-07-07 15:13:36作者:裘旻烁
背景介绍
AnimateDiff-CLI-Prompt-Travel是一个基于Diffusers框架实现的动画生成工具,它通过自定义的UNet3DConditionModel实现了视频序列的生成。在实际应用中,我们发现其推理速度有待提升,因此尝试使用OneDiff的oneflow_compile功能对其进行加速优化。
技术挑战与解决方案
1. 自定义UNet模型的编译问题
原项目使用了自定义实现的UNet3DConditionModel,而非Diffusers官方实现。直接使用oneflow_compile会遇到算子不支持的问题。
解决方案:
- 确认OneDiff版本:从dev_comfyui_animatediff_evolved分支切换到master分支
- 确保编译环境配置正确
2. 最临近插值算子不支持问题
原代码中使用了torch.nn.functional.interpolate的最临近插值功能,这是OneDiff当前不支持的算子。
解决方案: 我们实现了自定义的最临近插值函数:
def nearest_interpolate(input_tensor, size=None, scale_factor=None):
"""
最临近插值实现
:param input_tensor: 输入张量
:param size: 目标尺寸
:param scale_factor: 缩放因子
:return: 插值后的张量
"""
new_shape = list(input_tensor.shape)
if size is not None:
for i in range(2, 2 + len(size)):
new_shape[i] = size[i - 2]
if scale_factor is not None:
for i in range(2, 2 + len(scale_factor)):
new_shape[i] = int(new_shape[i] * scale_factor[i - 2])
output_tensor = torch.zeros(new_shape, dtype=input_tensor.dtype, device=input_tensor.device.type)
index_k = (torch.arange(0, output_tensor.shape[-1]) / output_tensor.shape[-1] * input_tensor.shape[-1]).int()
index_j = (torch.arange(0, output_tensor.shape[-2]) / output_tensor.shape[-2] * input_tensor.shape[-2]).int()
index_i = (torch.arange(0, output_tensor.shape[-3]) / output_tensor.shape[-3] * input_tensor.shape[-3]).int()
output_tensor = input_tensor[:, :, index_i][:, :, :, index_j][:, :, :, :, index_k]
return output_tensor
实现要点:
- 避免使用torch.tensor()类型转换,改用.int()方法
- 采用索引方式实现插值,而非直接使用numpy转换
- 支持3D张量的插值操作
3. 其他优化技巧
- 同时对UNet和ControlNet部分进行编译优化
- 注意数据类型和设备的一致性
- 监控显存使用情况,避免因优化导致显存溢出
性能评估
经过优化后:
- 模型推理速度得到显著提升
- 自定义插值函数比原生实现慢约5倍,但整体仍带来正向收益
- 系统稳定性良好,无崩溃现象
总结与展望
通过OneDiff的编译优化,我们成功提升了AnimateDiff-CLI-Prompt-Travel的推理性能。未来可考虑:
- 进一步优化自定义算子的实现效率
- 探索更多可编译的模型组件
- 研究混合精度训练带来的额外性能提升
这种技术方案不仅适用于本项目,也可推广到其他基于Diffusers的自定义模型优化场景中。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0