理解concurrencpp中的任务调度与阻塞问题
2025-06-30 01:20:46作者:姚月梅Lane
并发编程中的任务阻塞陷阱
在使用concurrencpp进行并发编程时,开发者可能会遇到一个看似奇怪的现象:当在任务内部阻塞等待其他任务完成时,某些子任务可能无法按预期执行。这种现象实际上揭示了并发编程中一个重要的设计原则。
问题现象分析
考虑以下代码示例:
int main() {
concurrencpp::runtime runtime;
auto tpe = runtime.thread_pool_executor();
auto result = tpe->submit([tpe]() {
std::cout << "Main Task" << '\n' << std::flush;
auto result1 = tpe->submit([]() { std::cout << "Task1" << '\n' << std::flush; });
auto result2 = tpe->submit([]() { std::cout << "Task2" << '\n' << std::flush; });
auto result3 = tpe->submit([]() { std::cout << "Task3" << '\n' << std::flush; });
result1.get();
result2.get();
result3.get();
});
result.get();
}
这段代码的输出可能只显示"Main Task"、"Task2"和"Task3",而"Task1"似乎被阻塞了。这种现象并非库的bug,而是由于不正确的阻塞操作导致的。
根本原因解析
问题的核心在于线程池中的阻塞操作。当我们在线程池任务中使用get()方法等待其他任务完成时,实际上是在阻塞当前工作线程。这会导致以下问题:
- 线程池中的工作线程被占用,无法执行其他任务
- 如果所有工作线程都被阻塞,可能导致死锁
- 违背了异步编程的非阻塞原则
正确的解决方案
concurrencpp推荐使用协程和co_await来避免阻塞操作。以下是改进后的正确实现:
concurrencpp::result<void> function(concurrencpp::executor_tag,
std::shared_ptr<concurrencpp::thread_pool_executor> tpe) {
std::cout << "Main Task" << '\n' << std::flush;
auto result1 = tpe->submit([]() { std::cout << "Task1" << '\n' << std::flush; });
auto result2 = tpe->submit([]() { std::cout << "Task2" << '\n' << std::flush; });
auto result3 = tpe->submit([]() { std::cout << "Task3" << '\n' << std::flush; });
co_await result1;
co_await result2;
co_await result3;
}
int main() {
concurrencpp::runtime runtime;
auto tpe = runtime.thread_pool_executor();
auto result = function({}, tpe);
result.get();
}
这个改进版本有以下优点:
- 使用协程而非阻塞调用
- 通过
executor_tag避免嵌套的result<result<void>>类型 - 使用
co_await而非get()来等待任务完成 - 保持了线程池工作线程的非阻塞特性
并发编程最佳实践
- 避免在非根任务中阻塞:阻塞操作只应在根级任务或特定允许的上下文中使用
- 优先使用协程:
co_await是处理异步操作的推荐方式 - 理解执行器类型:不同的执行器对阻塞操作有不同的容忍度
- 保持任务非阻塞:这是实现高效并发的基础
通过遵循这些原则,开发者可以充分利用concurrencpp提供的并发能力,构建高效可靠的异步应用程序。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
498
3.65 K
Ascend Extension for PyTorch
Python
301
343
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
309
134
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
151
882