理解concurrencpp中的任务调度与阻塞问题
2025-06-30 06:57:03作者:姚月梅Lane
并发编程中的任务阻塞陷阱
在使用concurrencpp进行并发编程时,开发者可能会遇到一个看似奇怪的现象:当在任务内部阻塞等待其他任务完成时,某些子任务可能无法按预期执行。这种现象实际上揭示了并发编程中一个重要的设计原则。
问题现象分析
考虑以下代码示例:
int main() {
concurrencpp::runtime runtime;
auto tpe = runtime.thread_pool_executor();
auto result = tpe->submit([tpe]() {
std::cout << "Main Task" << '\n' << std::flush;
auto result1 = tpe->submit([]() { std::cout << "Task1" << '\n' << std::flush; });
auto result2 = tpe->submit([]() { std::cout << "Task2" << '\n' << std::flush; });
auto result3 = tpe->submit([]() { std::cout << "Task3" << '\n' << std::flush; });
result1.get();
result2.get();
result3.get();
});
result.get();
}
这段代码的输出可能只显示"Main Task"、"Task2"和"Task3",而"Task1"似乎被阻塞了。这种现象并非库的bug,而是由于不正确的阻塞操作导致的。
根本原因解析
问题的核心在于线程池中的阻塞操作。当我们在线程池任务中使用get()方法等待其他任务完成时,实际上是在阻塞当前工作线程。这会导致以下问题:
- 线程池中的工作线程被占用,无法执行其他任务
- 如果所有工作线程都被阻塞,可能导致死锁
- 违背了异步编程的非阻塞原则
正确的解决方案
concurrencpp推荐使用协程和co_await来避免阻塞操作。以下是改进后的正确实现:
concurrencpp::result<void> function(concurrencpp::executor_tag,
std::shared_ptr<concurrencpp::thread_pool_executor> tpe) {
std::cout << "Main Task" << '\n' << std::flush;
auto result1 = tpe->submit([]() { std::cout << "Task1" << '\n' << std::flush; });
auto result2 = tpe->submit([]() { std::cout << "Task2" << '\n' << std::flush; });
auto result3 = tpe->submit([]() { std::cout << "Task3" << '\n' << std::flush; });
co_await result1;
co_await result2;
co_await result3;
}
int main() {
concurrencpp::runtime runtime;
auto tpe = runtime.thread_pool_executor();
auto result = function({}, tpe);
result.get();
}
这个改进版本有以下优点:
- 使用协程而非阻塞调用
- 通过
executor_tag避免嵌套的result<result<void>>类型 - 使用
co_await而非get()来等待任务完成 - 保持了线程池工作线程的非阻塞特性
并发编程最佳实践
- 避免在非根任务中阻塞:阻塞操作只应在根级任务或特定允许的上下文中使用
- 优先使用协程:
co_await是处理异步操作的推荐方式 - 理解执行器类型:不同的执行器对阻塞操作有不同的容忍度
- 保持任务非阻塞:这是实现高效并发的基础
通过遵循这些原则,开发者可以充分利用concurrencpp提供的并发能力,构建高效可靠的异步应用程序。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
731
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460