LLM Workflow Engine 项目中的函数调用迁移指南
2025-06-19 16:58:14作者:邬祺芯Juliet
在LLM Workflow Engine项目中,随着OpenAI API的更新,函数调用(function calling)的配置方式发生了变化。本文将详细介绍如何将原有的函数调用配置迁移到新的工具(tools)配置语法。
配置变更概述
OpenAI API从函数调用模式升级为更通用的工具调用模式,这一变化带来了配置方式的调整。在LLM Workflow Engine项目中,主要体现在两个关键配置项的迁移:
- 函数列表迁移:原先在
model_kwargs下的functions数组现在直接移至model_customizations下的tools数组 - 函数选择迁移:原先的
function_call配置项更名为tool_choice并提升到model_customizations层级 
新旧配置对比
旧版配置示例
在旧版本中,函数调用的配置位于model_kwargs下:
metadata:
  name: gpt-4-function-test
  provider: chat_openai
model_customizations:
  model_kwargs:
    functions:
      - test_function
      - test_function_2
    function_call:
      name: test_function
新版配置示例
新版本中,配置更加简洁直接:
metadata:
  name: gpt-4-function-test
  provider: chat_openai
model_customizations:
  tools:
    - test_function
    - test_function_2
  tool_choice: test_function
迁移注意事项
- 层级简化:新配置消除了
model_kwargs这一中间层级,使配置结构更加扁平化 - 命名变更:
function_call更名为tool_choice,反映了OpenAI API从专用函数调用到通用工具调用的演进 - 兼容性考虑:虽然语法变更,但功能上保持了向后兼容,原有函数定义无需修改
 
技术背景
OpenAI将函数调用升级为工具调用的设计,是为了支持更广泛的外部能力集成。工具调用不仅包含了原有的函数调用能力,还可以支持:
- 多种类型的工具集成
 - 更灵活的工具选择策略
 - 未来可能扩展的其他交互方式
 
这一变更使得LLM Workflow Engine能够更好地适应OpenAI API的演进,同时为用户提供更清晰的配置方式。
总结
对于LLM Workflow Engine用户而言,迁移到新的工具调用配置非常简单。只需将原有的functions和function_call配置项移动到新的位置并重命名即可。这一变更不仅简化了配置结构,也为未来可能的功能扩展奠定了基础。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447