理解NVIDIA Omniverse Orbit中的仿真时间步长与降采样设置
2025-06-24 18:36:53作者:曹令琨Iris
在机器人仿真与控制领域,时间步长的设置对于仿真精度和实时性能有着重要影响。本文将以NVIDIA Omniverse Orbit项目为例,深入解析仿真时间步长(sim.dt)与降采样(decimation)参数的关系及其在策略学习中的应用。
仿真时间步长(sim.dt)的基本概念
仿真时间步长(sim.dt)定义了物理引擎计算的最小时间间隔。在Orbit中,默认设置为1/60秒,这意味着物理引擎每1/60秒就会计算一次系统的状态更新。更小的时间步长(如1/240秒)可以提高仿真的精度,但也会增加计算负担。
降采样(decimation)的作用机制
降采样参数决定了策略更新的频率。当设置decimation=8时,意味着策略每8个物理步长才会执行一次观测收集和动作输出。这种设置带来了几个关键优势:
- 降低计算开销:策略网络不需要在每个物理步长都进行计算
- 更接近真实硬件:实际机器人控制器通常无法达到毫秒级的响应速度
- 平衡精度与效率:保持物理仿真的高精度,同时控制策略更新频率
时间参数的综合影响
当sim.dt=1/240秒且decimation=8时,系统行为如下:
- 物理仿真步长:1/240秒(约4.17毫秒)
- 策略更新间隔:8×1/240=1/30秒(约33.3毫秒)
- 数据采集密度:在1秒仿真时间内可采集约30个数据点
渲染频率的最佳实践
根据项目维护者的建议,渲染频率应与策略更新频率保持一致,即:
sim.render_interval = sim.dt × decimation
这种设置确保了渲染不会成为性能瓶颈,同时保证可视化与策略执行的同步性。
实际应用中的考量
在sim2real(仿真到现实)迁移学习中,时间参数的设置需要特别注意:
- 数据点数量:更小的sim.dt和适当的decimation可以增加轨迹数据点的密度
- 实时性要求:需要考虑实际硬件的控制延迟和计算能力
- 训练效率:过高的物理精度可能导致训练速度下降
通过合理配置这些参数,开发者可以在仿真精度、训练效率和现实可迁移性之间取得平衡,为机器人学习任务创造更有利的条件。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493