首页
/ MNN-LLM项目中Qwen1.5模型转换性能优化实践

MNN-LLM项目中Qwen1.5模型转换性能优化实践

2025-07-10 17:03:24作者:凤尚柏Louis

在MNN-LLM项目中使用Qwen1.5系列模型时,开发者可能会遇到模型转换后推理性能下降的问题。本文将深入分析这一现象的原因,并提供有效的解决方案。

问题现象

当使用llm_export.py脚本转换Qwen1.5-1.8B和Qwen1.5-4B模型时,虽然转换过程顺利完成,但转换后的模型在Android设备上的解码(decode)速度明显慢于直接从ModelScope下载的预转换版本。通过文件大小对比发现,转换生成的MNN模型文件与官方预转换版本存在显著差异。

性能差异分析

这种性能差异主要源于以下几个方面:

  1. 算子融合优化不足:官方预转换版本可能应用了更全面的算子融合策略,减少了计算图中的节点数量,从而提升执行效率。

  2. 编译选项差异:不同版本的MNN转换工具可能使用了不同的编译优化选项,影响最终生成的模型性能。

  3. 量化策略不同:虽然文件大小差异不一定直接反映量化程度,但量化策略的选择会影响计算效率。

解决方案

要获得与官方预转换版本相近的性能,可以采用以下方法:

  1. 使用最新版MNN转换工具:确保使用MNN 2.9.0或更高版本进行模型转换,这些版本针对Transformer架构做了专门优化。

  2. 启用Transformer专用优化:在转换命令中添加--transformerFuse=1参数,这会启用针对Transformer架构的算子融合优化。

  3. 完整的转换流程建议

    python llm_export.py --path /path/to/Qwen1.5-1.8B-Chat \
    --export --export_embed --embed_bin --export_token --export_mnn \
    --type Qwen1_5-1_8B-Chat
    

    然后使用MNN转换工具对生成的ONNX文件进行二次优化:

    MNNConvert --modelFile model.onnx --MNNModel model.mnn \
    --fp16 --optimizeLevel 2 --transformerFuse 1
    

性能对比说明

即使采用上述优化措施,自行转换的模型可能仍会略慢于官方预转换版本。这是因为官方版本可能还应用了其他专有优化技术。对于大多数应用场景,经过优化的自行转换版本已经能够提供可接受的性能。

结论

在MNN-LLM项目中使用Qwen1.5系列模型时,通过正确配置转换参数和使用最新工具链,可以显著提升转换后模型的推理性能。开发者应当关注MNN项目的更新,及时采用新的优化技术,以获得最佳性能表现。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
561
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
396
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
407
387
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
199
279
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0