MNN-LLM项目中Qwen1.5模型转换性能优化实践
在MNN-LLM项目中使用Qwen1.5系列模型时,开发者可能会遇到模型转换后推理性能下降的问题。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象
当使用llm_export.py脚本转换Qwen1.5-1.8B和Qwen1.5-4B模型时,虽然转换过程顺利完成,但转换后的模型在Android设备上的解码(decode)速度明显慢于直接从ModelScope下载的预转换版本。通过文件大小对比发现,转换生成的MNN模型文件与官方预转换版本存在显著差异。
性能差异分析
这种性能差异主要源于以下几个方面:
-
算子融合优化不足:官方预转换版本可能应用了更全面的算子融合策略,减少了计算图中的节点数量,从而提升执行效率。
-
编译选项差异:不同版本的MNN转换工具可能使用了不同的编译优化选项,影响最终生成的模型性能。
-
量化策略不同:虽然文件大小差异不一定直接反映量化程度,但量化策略的选择会影响计算效率。
解决方案
要获得与官方预转换版本相近的性能,可以采用以下方法:
-
使用最新版MNN转换工具:确保使用MNN 2.9.0或更高版本进行模型转换,这些版本针对Transformer架构做了专门优化。
-
启用Transformer专用优化:在转换命令中添加
--transformerFuse=1
参数,这会启用针对Transformer架构的算子融合优化。 -
完整的转换流程建议:
python llm_export.py --path /path/to/Qwen1.5-1.8B-Chat \ --export --export_embed --embed_bin --export_token --export_mnn \ --type Qwen1_5-1_8B-Chat
然后使用MNN转换工具对生成的ONNX文件进行二次优化:
MNNConvert --modelFile model.onnx --MNNModel model.mnn \ --fp16 --optimizeLevel 2 --transformerFuse 1
性能对比说明
即使采用上述优化措施,自行转换的模型可能仍会略慢于官方预转换版本。这是因为官方版本可能还应用了其他专有优化技术。对于大多数应用场景,经过优化的自行转换版本已经能够提供可接受的性能。
结论
在MNN-LLM项目中使用Qwen1.5系列模型时,通过正确配置转换参数和使用最新工具链,可以显著提升转换后模型的推理性能。开发者应当关注MNN项目的更新,及时采用新的优化技术,以获得最佳性能表现。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0104Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









