LLM-Foundry项目中的AMD MI250 GPU性能优化解析
2025-06-14 12:28:02作者:钟日瑜
在LLM-Foundry项目中使用AMD MI250 GPU进行Transformer模型(GPT架构)基准测试时,开发者发现其吞吐量仅为NVIDIA A100 GPU的一半左右。这一现象引发了性能优化方面的深入探讨。
性能差异现象
测试数据显示,在7B参数的模型上,A100 GPU(4卡)的吞吐量为14k tokens/s,而MI250(8卡)仅为12.8k tokens/s。在13.3B参数的模型上,A100(8卡)达到12.9k tokens/s,而MI250(8卡)只有6k tokens/s。表面上看,MI250的性能确实只有A100的一半。
根本原因分析
经过深入调查,发现这是由于PyTorch对AMD MI250 GPU的特殊识别方式导致的。MI250实际上由两个GCD(图形计算单元)组成,但PyTorch会将每个MI250识别为两个独立的设备。因此:
- 4块MI250物理卡会被识别为8个设备
- Composer报告的"tokens/s/gpu"实际上是"tokens/s/GCD"
- 要得到真正的MI250卡性能,需要将结果乘以2
技术背景
AMD MI250采用了多芯片模块(MCM)设计,每个物理卡包含两个GCD。这种设计与传统GPU不同,导致软件层面的识别方式有差异。相比之下,NVIDIA A100是单芯片设计,识别方式更为直接。
性能对比修正
考虑这一因素后重新计算:
- 7B模型在MI250上的实际吞吐量应为1602×2=3204 tokens/s/GCD
- 13.3B模型在MI250上的实际吞吐量应为753×2=1506 tokens/s/GCD
这样与A100的3700和1613 tokens/s/GCD相比,性能差距明显缩小。
未来展望
值得注意的是,AMD新一代MI300X GPU将改变这一设计,8卡系统将被正确识别为8个设备,不再需要手动调整计算。这反映了硬件设计趋势与软件生态的协同演进。
实践建议
对于使用MI250进行LLM训练的开发人员,建议:
- 明确区分物理卡数量和PyTorch识别的设备数量
- 在性能评估时进行适当的倍数调整
- 关注硬件规格文档,了解底层架构特点
- 在跨平台比较时考虑这些架构差异
通过正确理解硬件特性和软件识别机制,开发者可以更准确地评估和优化系统性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
451
3.36 K
Ascend Extension for PyTorch
Python
254
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
832
407
暂无简介
Dart
705
167
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
162
59
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19