Open-Sora项目中的内存泄漏与多机性能优化实践
2025-05-08 20:20:03作者:齐冠琰
内存泄漏问题的发现与解决
在Open-Sora项目的实际应用中,开发团队发现了一个严重的内存泄漏问题。当使用1080P分辨率视频进行训练,并设置8个数据加载工作进程时,系统内存会在几千个训练步骤后耗尽。这一问题在项目早期版本中尤为明显,严重影响了训练的稳定性。
经过深入分析,技术团队定位到问题根源在于pyav库与Python列表交互时产生的内存泄漏。视频解码后的数据量本身就非常庞大,加上内存泄漏的叠加效应,导致系统资源迅速耗尽。通过一系列优化措施,团队成功将内存占用从450GB降低到300GB以下,显著改善了内存使用效率。
对于内存优化,技术团队提出了以下实用建议:
- 适当减少数据加载工作进程数量
- 调整预取因子(prefetch_factor)参数
- 降低训练视频的分辨率或帧率
- 定期执行垃圾回收(GC)操作
- 缩短训练周期(epoch)长度
多机分布式训练的性能挑战
在分布式训练场景下,项目团队遇到了另一个关键问题:随着计算节点数量的增加,训练速度并没有线性提升,反而出现了性能下降的情况。具体表现为:
- 单机8卡训练时,每个步骤耗时约7秒
- 扩展到16台机器(128卡)时,每个步骤耗时增加到约14秒
- 性能下降与计算节点数量呈近似线性关系
进一步分析表明,这一问题主要源于多机通信开销。在批量大小(batch size)较小时,通信时间占据了训练步骤的较大比例,导致扩展效率低下。技术团队通过优化通信策略和参数配置,最终将性能提升到:
- 单卡:2.65秒/步骤
- 单机8卡:2.75秒/步骤
- 8机64卡:3.50秒/步骤
性能优化经验总结
基于Open-Sora项目的实践经验,对于大规模视频模型训练,建议特别注意以下几点:
-
内存管理:视频数据内存占用大,需要精细控制数据加载过程,定期释放不再使用的资源。
-
分布式配置:
- 确保集群网络带宽充足
- 优化NCCL通信参数配置
- 检查多机间的网络拓扑结构
-
批量大小选择:适当增大批量大小可以分摊通信开销,提高多机并行效率。
-
版本兼容性:使用经过验证的软件版本组合,如ColossalAI 0.4.0版本在本项目中表现良好。
这些优化经验不仅适用于Open-Sora项目,对于其他大规模视频处理任务的深度学习项目也具有参考价值。通过系统性的问题定位和优化,可以显著提升训练效率和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355