探索深度估计新领域:Synthetic2Realistic
2024-06-02 11:39:27作者:冯梦姬Eddie
在这个快速发展的计算机视觉时代,深度估计已成为自动驾驶和增强现实等应用的核心技术之一。今天,我们向您推荐一个创新的开源项目——Synthetic2Realistic,它由NTU的研究团队开发,旨在通过合成到真实世界的图像转换解决单图像深度估计任务。
项目介绍
Synthetic2Realistic 是一个基于 PyTorch 的实现,提供了 T2Net 算法的训练和测试代码。该算法来源于论文 "T2Net: Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks",可以在无配对的图像之间进行翻译,并应用于单目深度估计任务。项目还包括了室外和室内场景的数据集,以及扩展功能如 WS-GAN 和 unpaired 图像到图像的转换。
项目技术分析
Synthetic2Realistic 使用了先进的生成对抗网络(GAN)架构,特别是 T2Net 模型,它能够学习从合成图像到真实世界图像的转换。在训练过程中,模型不仅处理配对数据,还支持非配对数据,这大大增加了其通用性和实用性。此外,该项目还利用了数据增强技术,如随机翻转和旋转,以提高模型的泛化能力。
应用场景
这个工具箱适用于多个实际应用:
- 自动驾驶:通过对合成驾驶场景的实时深度估计,模拟真实环境,为自动驾驶系统提供训练数据。
- 室内设计与导航:利用对室内合成图像的深度预测,可以创建更真实的3D空间模型,用于室内导航或虚拟现实体验。
- 图像修复和增强:可扩展至其他图像到图像的转换任务,如照片风格转换,马变斑马等。
项目特点
- 灵活性:支持不同领域的数据集,包括室内外场景,易于添加新的数据源。
- 可视化:通过 Visdom 提供详细的训练结果和损失曲线,使得模型优化过程更为直观。
- 预训练模型:提供预训练模型,方便用户直接进行测试和进一步研究。
- 易用性:简洁明了的代码结构,让使用者轻松上手训练和测试。
为了深入了解并利用这个强大的工具,请参照项目文档进行安装,并探索其中的预训练模型。让我们一起开启深度估计的新旅程,将合成之美转化为现实生活中的精准洞察!
git clone https://github.com/lyndonzheng/Synthetic2Realistic
cd Synthetic2Realistic
# 继续按照项目指南进行安装和训练
引用该项目时,请记得提及原始论文:
@inproceedings{zheng2018t2net,
title={T2Net: Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks},
author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={767--783},
year={2018}
}
现在就加入Synthetic2Realistic,开启您的深度学习探索之旅吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
暂无简介
Dart
639
145
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100