探索深度估计新领域:Synthetic2Realistic
2024-06-02 11:39:27作者:冯梦姬Eddie
在这个快速发展的计算机视觉时代,深度估计已成为自动驾驶和增强现实等应用的核心技术之一。今天,我们向您推荐一个创新的开源项目——Synthetic2Realistic,它由NTU的研究团队开发,旨在通过合成到真实世界的图像转换解决单图像深度估计任务。
项目介绍
Synthetic2Realistic 是一个基于 PyTorch 的实现,提供了 T2Net 算法的训练和测试代码。该算法来源于论文 "T2Net: Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks",可以在无配对的图像之间进行翻译,并应用于单目深度估计任务。项目还包括了室外和室内场景的数据集,以及扩展功能如 WS-GAN 和 unpaired 图像到图像的转换。
项目技术分析
Synthetic2Realistic 使用了先进的生成对抗网络(GAN)架构,特别是 T2Net 模型,它能够学习从合成图像到真实世界图像的转换。在训练过程中,模型不仅处理配对数据,还支持非配对数据,这大大增加了其通用性和实用性。此外,该项目还利用了数据增强技术,如随机翻转和旋转,以提高模型的泛化能力。
应用场景
这个工具箱适用于多个实际应用:
- 自动驾驶:通过对合成驾驶场景的实时深度估计,模拟真实环境,为自动驾驶系统提供训练数据。
- 室内设计与导航:利用对室内合成图像的深度预测,可以创建更真实的3D空间模型,用于室内导航或虚拟现实体验。
- 图像修复和增强:可扩展至其他图像到图像的转换任务,如照片风格转换,马变斑马等。
项目特点
- 灵活性:支持不同领域的数据集,包括室内外场景,易于添加新的数据源。
- 可视化:通过 Visdom 提供详细的训练结果和损失曲线,使得模型优化过程更为直观。
- 预训练模型:提供预训练模型,方便用户直接进行测试和进一步研究。
- 易用性:简洁明了的代码结构,让使用者轻松上手训练和测试。
为了深入了解并利用这个强大的工具,请参照项目文档进行安装,并探索其中的预训练模型。让我们一起开启深度估计的新旅程,将合成之美转化为现实生活中的精准洞察!
git clone https://github.com/lyndonzheng/Synthetic2Realistic
cd Synthetic2Realistic
# 继续按照项目指南进行安装和训练
引用该项目时,请记得提及原始论文:
@inproceedings{zheng2018t2net,
title={T2Net: Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks},
author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={767--783},
year={2018}
}
现在就加入Synthetic2Realistic,开启您的深度学习探索之旅吧!
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp英语课程填空题提示缺失问题分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0