探索深度估计新领域:Synthetic2Realistic
2024-06-02 11:39:27作者:冯梦姬Eddie
在这个快速发展的计算机视觉时代,深度估计已成为自动驾驶和增强现实等应用的核心技术之一。今天,我们向您推荐一个创新的开源项目——Synthetic2Realistic,它由NTU的研究团队开发,旨在通过合成到真实世界的图像转换解决单图像深度估计任务。
项目介绍
Synthetic2Realistic 是一个基于 PyTorch 的实现,提供了 T2Net 算法的训练和测试代码。该算法来源于论文 "T2Net: Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks",可以在无配对的图像之间进行翻译,并应用于单目深度估计任务。项目还包括了室外和室内场景的数据集,以及扩展功能如 WS-GAN 和 unpaired 图像到图像的转换。
项目技术分析
Synthetic2Realistic 使用了先进的生成对抗网络(GAN)架构,特别是 T2Net 模型,它能够学习从合成图像到真实世界图像的转换。在训练过程中,模型不仅处理配对数据,还支持非配对数据,这大大增加了其通用性和实用性。此外,该项目还利用了数据增强技术,如随机翻转和旋转,以提高模型的泛化能力。
应用场景
这个工具箱适用于多个实际应用:
- 自动驾驶:通过对合成驾驶场景的实时深度估计,模拟真实环境,为自动驾驶系统提供训练数据。
- 室内设计与导航:利用对室内合成图像的深度预测,可以创建更真实的3D空间模型,用于室内导航或虚拟现实体验。
- 图像修复和增强:可扩展至其他图像到图像的转换任务,如照片风格转换,马变斑马等。
项目特点
- 灵活性:支持不同领域的数据集,包括室内外场景,易于添加新的数据源。
- 可视化:通过 Visdom 提供详细的训练结果和损失曲线,使得模型优化过程更为直观。
- 预训练模型:提供预训练模型,方便用户直接进行测试和进一步研究。
- 易用性:简洁明了的代码结构,让使用者轻松上手训练和测试。
为了深入了解并利用这个强大的工具,请参照项目文档进行安装,并探索其中的预训练模型。让我们一起开启深度估计的新旅程,将合成之美转化为现实生活中的精准洞察!
git clone https://github.com/lyndonzheng/Synthetic2Realistic
cd Synthetic2Realistic
# 继续按照项目指南进行安装和训练
引用该项目时,请记得提及原始论文:
@inproceedings{zheng2018t2net,
title={T2Net: Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks},
author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={767--783},
year={2018}
}
现在就加入Synthetic2Realistic,开启您的深度学习探索之旅吧!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5