在crewAI项目中正确配置AzureChatOpenAI的LLM实例
crewAI是一个强大的多代理框架,但在使用AzureChatOpenAI作为语言模型时,开发者可能会遇到一些配置上的挑战。本文将详细介绍如何正确设置AzureChatOpenAI实例并与crewAI框架集成。
问题背景
当尝试在crewAI中使用AzureChatOpenAI时,开发者可能会遇到认证错误,提示API密钥未正确设置。这是因为crewAI的LLM配置方式与直接使用AzureChatOpenAI有所不同。
正确配置方法
1. 创建LLM实例
在crewAI中,应使用LLM类来创建AzureChatOpenAI实例。以下是正确的配置方式:
from crewai import LLM
llm_crewai = LLM(
api_key='你的Azure API密钥',
api_base='你的Azure API基础URL',
model='azure/gpt-4o-mini-2024-07-18', # 注意前缀azure/
api_version="你的API版本"
)
关键点在于模型名称前必须加上azure/前缀,这告诉crewAI使用的是Azure服务而非直接调用OpenAI。
2. 将LLM实例分配给Agent
创建LLM实例后,有两种方式将其分配给Agent:
方式一:在Agent创建时指定
researcher = Agent(
role='研究员',
goal='查找并总结最新的人工智能新闻',
backstory='一位对人工智能领域有深入了解的研究员',
llm=llm_crewai, # 直接指定LLM
verbose=True
)
方式二:创建后动态分配
researcher = Agent(
role='研究员',
goal='查找并总结最新的人工智能新闻',
backstory='一位对人工智能领域有深入了解的研究员',
verbose=True
)
# 创建后分配LLM
researcher.llm = llm_crewai
3. 为Crew指定管理LLM
如果需要为整个Crew指定管理LLM,可以在Crew初始化时设置:
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_task],
process='sequential',
manager_llm=llm_crewai # 为Crew指定管理LLM
)
常见问题解决
-
认证错误:确保api_key、api_base和api_version都正确无误。Azure的API密钥与OpenAI的不同,必须使用Azure门户中获取的密钥。
-
模型前缀问题:模型名称前必须加上
azure/前缀,否则crewAI会尝试使用标准的OpenAI端点。 -
版本兼容性:确认使用的crewAI版本支持AzureChatOpenAI集成。较新版本通常有更好的兼容性。
最佳实践
-
将敏感信息如API密钥存储在环境变量中,而非硬编码在脚本里。
-
为不同的环境(开发、测试、生产)创建不同的Azure资源,并使用相应的配置。
-
在复杂项目中,考虑创建LLM工厂函数来集中管理不同Agent的LLM配置。
通过以上配置,开发者可以顺利地在crewAI框架中使用AzureChatOpenAI服务,充分发挥Azure云服务的优势与crewAI多代理系统的强大功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00