在crewAI项目中正确配置AzureChatOpenAI的LLM实例
crewAI是一个强大的多代理框架,但在使用AzureChatOpenAI作为语言模型时,开发者可能会遇到一些配置上的挑战。本文将详细介绍如何正确设置AzureChatOpenAI实例并与crewAI框架集成。
问题背景
当尝试在crewAI中使用AzureChatOpenAI时,开发者可能会遇到认证错误,提示API密钥未正确设置。这是因为crewAI的LLM配置方式与直接使用AzureChatOpenAI有所不同。
正确配置方法
1. 创建LLM实例
在crewAI中,应使用LLM类来创建AzureChatOpenAI实例。以下是正确的配置方式:
from crewai import LLM
llm_crewai = LLM(
api_key='你的Azure API密钥',
api_base='你的Azure API基础URL',
model='azure/gpt-4o-mini-2024-07-18', # 注意前缀azure/
api_version="你的API版本"
)
关键点在于模型名称前必须加上azure/前缀,这告诉crewAI使用的是Azure服务而非直接调用OpenAI。
2. 将LLM实例分配给Agent
创建LLM实例后,有两种方式将其分配给Agent:
方式一:在Agent创建时指定
researcher = Agent(
role='研究员',
goal='查找并总结最新的人工智能新闻',
backstory='一位对人工智能领域有深入了解的研究员',
llm=llm_crewai, # 直接指定LLM
verbose=True
)
方式二:创建后动态分配
researcher = Agent(
role='研究员',
goal='查找并总结最新的人工智能新闻',
backstory='一位对人工智能领域有深入了解的研究员',
verbose=True
)
# 创建后分配LLM
researcher.llm = llm_crewai
3. 为Crew指定管理LLM
如果需要为整个Crew指定管理LLM,可以在Crew初始化时设置:
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_task],
process='sequential',
manager_llm=llm_crewai # 为Crew指定管理LLM
)
常见问题解决
-
认证错误:确保api_key、api_base和api_version都正确无误。Azure的API密钥与OpenAI的不同,必须使用Azure门户中获取的密钥。
-
模型前缀问题:模型名称前必须加上
azure/前缀,否则crewAI会尝试使用标准的OpenAI端点。 -
版本兼容性:确认使用的crewAI版本支持AzureChatOpenAI集成。较新版本通常有更好的兼容性。
最佳实践
-
将敏感信息如API密钥存储在环境变量中,而非硬编码在脚本里。
-
为不同的环境(开发、测试、生产)创建不同的Azure资源,并使用相应的配置。
-
在复杂项目中,考虑创建LLM工厂函数来集中管理不同Agent的LLM配置。
通过以上配置,开发者可以顺利地在crewAI框架中使用AzureChatOpenAI服务,充分发挥Azure云服务的优势与crewAI多代理系统的强大功能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00