在crewAI项目中正确配置AzureChatOpenAI的LLM实例
crewAI是一个强大的多代理框架,但在使用AzureChatOpenAI作为语言模型时,开发者可能会遇到一些配置上的挑战。本文将详细介绍如何正确设置AzureChatOpenAI实例并与crewAI框架集成。
问题背景
当尝试在crewAI中使用AzureChatOpenAI时,开发者可能会遇到认证错误,提示API密钥未正确设置。这是因为crewAI的LLM配置方式与直接使用AzureChatOpenAI有所不同。
正确配置方法
1. 创建LLM实例
在crewAI中,应使用LLM类来创建AzureChatOpenAI实例。以下是正确的配置方式:
from crewai import LLM
llm_crewai = LLM(
api_key='你的Azure API密钥',
api_base='你的Azure API基础URL',
model='azure/gpt-4o-mini-2024-07-18', # 注意前缀azure/
api_version="你的API版本"
)
关键点在于模型名称前必须加上azure/前缀,这告诉crewAI使用的是Azure服务而非直接调用OpenAI。
2. 将LLM实例分配给Agent
创建LLM实例后,有两种方式将其分配给Agent:
方式一:在Agent创建时指定
researcher = Agent(
role='研究员',
goal='查找并总结最新的人工智能新闻',
backstory='一位对人工智能领域有深入了解的研究员',
llm=llm_crewai, # 直接指定LLM
verbose=True
)
方式二:创建后动态分配
researcher = Agent(
role='研究员',
goal='查找并总结最新的人工智能新闻',
backstory='一位对人工智能领域有深入了解的研究员',
verbose=True
)
# 创建后分配LLM
researcher.llm = llm_crewai
3. 为Crew指定管理LLM
如果需要为整个Crew指定管理LLM,可以在Crew初始化时设置:
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, write_task],
process='sequential',
manager_llm=llm_crewai # 为Crew指定管理LLM
)
常见问题解决
-
认证错误:确保api_key、api_base和api_version都正确无误。Azure的API密钥与OpenAI的不同,必须使用Azure门户中获取的密钥。
-
模型前缀问题:模型名称前必须加上
azure/前缀,否则crewAI会尝试使用标准的OpenAI端点。 -
版本兼容性:确认使用的crewAI版本支持AzureChatOpenAI集成。较新版本通常有更好的兼容性。
最佳实践
-
将敏感信息如API密钥存储在环境变量中,而非硬编码在脚本里。
-
为不同的环境(开发、测试、生产)创建不同的Azure资源,并使用相应的配置。
-
在复杂项目中,考虑创建LLM工厂函数来集中管理不同Agent的LLM配置。
通过以上配置,开发者可以顺利地在crewAI框架中使用AzureChatOpenAI服务,充分发挥Azure云服务的优势与crewAI多代理系统的强大功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00