Daft项目中的DataFrame迭代性能优化分析
性能瓶颈的发现
在数据分析领域,DataFrame的迭代操作是一个常见需求。近期在Daft项目中发现了一个显著的性能问题:当处理包含大型列表或张量的DataFrame时,直接使用Daft的iter_rows()方法进行迭代,其速度比先将DataFrame转换为Pandas再进行迭代慢了1000倍以上。
通过基准测试发现,对于一个包含1000行数据、每行有一个10万元素列表的DataFrame:
- Pandas转换+迭代耗时约20.8毫秒
- 直接Daft迭代耗时约32.2秒
问题根源分析
经过深入调查,发现性能瓶颈主要来自以下几个方面:
-
类型转换开销:Daft在迭代过程中将List[uint8]等列类型完全转换为Python的int64列表,这一转换过程极其耗时
-
边界跨越成本:每次迭代都需要跨越Python-Rust边界,带来额外的指令开销和GIL获取成本
-
执行器优化不足:Daft的执行器对这类行式操作缺乏针对性优化
-
内存缓冲控制:缺乏对读取缓冲大小的精细控制,无法实现高效批量处理
解决方案与优化
针对这些问题,Daft团队提出了几个关键优化方向:
1. 原生数组视图支持
利用Arrow提供的to_numpy()方法,可以直接将Arrow数组转换为NumPy数组视图,避免了完全转换为Python列表的开销。这种方法实现了零拷贝或最小拷贝的转换,大幅提升了性能。
2. 迭代格式选项
新增了column_format参数,允许用户在迭代时选择数据表示形式:
- 'python':完全转换为Python原生对象(默认)
- 'arrow':保留为Arrow数组格式
当处理大型数值数据时,使用'arrow'格式可以显著提升性能,同时用户还可以根据需要将Arrow数组进一步转换为NumPy数组。
3. 分区迭代优化
对于支持分区的执行环境,提供了iter_partitions方法,可以更高效地批量处理数据分区,减少边界跨越次数。
实际应用建议
对于需要处理大型数值数据集的用户,建议:
- 优先使用arrow格式迭代:
for row in df.iter_rows(column_format="arrow"):
np_array = row["list"].values.to_numpy()
# 处理np_array
- 对于超大数据集,考虑使用分区迭代:
for partition in df.iter_partitions():
# 批量处理分区数据
arrow_table = partition.to_arrow()
- 避免不必要的完整转换,尽量在分区或批量级别进行操作
未来优化方向
虽然当前优化已经解决了主要性能问题,但仍有进一步改进空间:
-
增加缓冲大小控制参数,允许用户根据内存情况调整处理粒度
-
探索异步数据预取机制,减少I/O等待时间
-
针对张量数据优化存储和访问模式,可能利用形状信息实现更高效的视图转换
这些优化使Daft在处理大型数值数据集时能够提供更接近原生性能的迭代体验,为数据科学家和工程师提供了更高效的工具选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01