Rig项目中LLM工具调用消息角色错误问题分析
2025-06-24 05:38:56作者:裴锟轩Denise
问题背景
在Rig项目(一个基于LLM的代理系统)中,发现了一个关于大型语言模型(LLM)工具调用的关键实现错误。当LLM调用外部工具并获取结果后,系统错误地将工具返回结果标记为"user"角色的消息,而非专用的"tool"或"function"角色消息。这一错误导致LLM无法正确识别工具返回结果,进而进入无限循环调用工具的异常状态。
技术细节分析
错误现象
从日志中可以清晰观察到问题现象:
- 用户发起初始请求
- LLM代理正确识别需要调用list_tables_tool工具
- 工具成功执行并返回结果(包含_sqlx_migrations和users两个表)
- 但系统将工具结果作为"user"消息加入对话历史
- LLM再次识别为需要调用工具,形成无限循环
根本原因
问题的核心在于违反了主流LLM API(包括OpenAI和Qwen等)关于工具调用的规范。正确的工具调用流程应该遵循以下消息序列:
- 用户消息(user)
- 助手消息(assistant)包含工具调用请求
- 工具消息(tool/function)包含工具执行结果
- 助手消息(assistant)给出最终响应
而当前实现错误地将第3步的工具结果消息标记为了用户消息,导致LLM无法正确理解上下文。
当前错误实现
项目当前的Message枚举定义如下:
#[derive(Clone, Debug, Deserialize, Serialize, PartialEq)]
#[serde(tag = "role", rename_all = "lowercase")]
pub enum Message {
User {
content: OneOrMany<UserContent>
},
Assistant {
content: OneOrMany<AssistantContent>,
},
}
工具结果被错误地添加为User消息:
chat_history.push(Message::User {
content: OneOrMany::many(tool_content)
});
解决方案
正确的消息结构设计
需要扩展Message枚举以支持工具角色消息。参考主流实现,建议采用如下结构:
#[derive(Debug, Serialize, Deserialize, PartialEq, Clone)]
#[serde(tag = "role", rename_all = "lowercase")]
pub enum Message {
User {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
},
Assistant {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
tool_calls: Vec<ToolCall>,
},
System {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
},
#[serde(rename = "tool")]
ToolResult {
tool_call_id: String,
content: OneOrMany<ToolResultContent>,
},
}
正确的工具结果添加方式
工具结果应当使用专用角色添加:
chat_history.push(Message::ToolResult {
tool_call_id: tool_call.id.clone(),
content: OneOrMany::one(ToolResultContent::from(output)),
});
技术影响分析
这一修复将带来以下改进:
- 符合规范:与OpenAI和Qwen等主流LLM API的工具调用规范保持一致
- 避免循环:LLM能正确识别工具结果,不再陷入无限调用循环
- 可扩展性:为未来支持更复杂的工具调用场景奠定基础
- 互操作性:更容易与其他LLM系统集成和交互
实现建议
在实际实现时,还需要考虑:
- 向后兼容性:确保现有代码能处理新的消息类型
- 错误处理:工具调用失败时的消息处理机制
- 多工具支持:同时处理多个工具调用的结果
- 上下文管理:合理控制对话历史长度,避免因工具调用导致上下文膨胀
总结
在基于LLM的系统中,严格遵守消息角色规范对于工具调用的正确性至关重要。Rig项目的这一修复不仅解决了当前的问题,也为系统未来的功能扩展提供了更健壮的基础架构。对于开发者而言,理解LLM交互中的消息角色语义是构建可靠AI应用的关键技能之一。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212