Rig项目中LLM工具调用消息角色错误问题分析
2025-06-24 10:55:16作者:裴锟轩Denise
问题背景
在Rig项目(一个基于LLM的代理系统)中,发现了一个关于大型语言模型(LLM)工具调用的关键实现错误。当LLM调用外部工具并获取结果后,系统错误地将工具返回结果标记为"user"角色的消息,而非专用的"tool"或"function"角色消息。这一错误导致LLM无法正确识别工具返回结果,进而进入无限循环调用工具的异常状态。
技术细节分析
错误现象
从日志中可以清晰观察到问题现象:
- 用户发起初始请求
- LLM代理正确识别需要调用list_tables_tool工具
- 工具成功执行并返回结果(包含_sqlx_migrations和users两个表)
- 但系统将工具结果作为"user"消息加入对话历史
- LLM再次识别为需要调用工具,形成无限循环
根本原因
问题的核心在于违反了主流LLM API(包括OpenAI和Qwen等)关于工具调用的规范。正确的工具调用流程应该遵循以下消息序列:
- 用户消息(user)
- 助手消息(assistant)包含工具调用请求
- 工具消息(tool/function)包含工具执行结果
- 助手消息(assistant)给出最终响应
而当前实现错误地将第3步的工具结果消息标记为了用户消息,导致LLM无法正确理解上下文。
当前错误实现
项目当前的Message枚举定义如下:
#[derive(Clone, Debug, Deserialize, Serialize, PartialEq)]
#[serde(tag = "role", rename_all = "lowercase")]
pub enum Message {
User {
content: OneOrMany<UserContent>
},
Assistant {
content: OneOrMany<AssistantContent>,
},
}
工具结果被错误地添加为User消息:
chat_history.push(Message::User {
content: OneOrMany::many(tool_content)
});
解决方案
正确的消息结构设计
需要扩展Message枚举以支持工具角色消息。参考主流实现,建议采用如下结构:
#[derive(Debug, Serialize, Deserialize, PartialEq, Clone)]
#[serde(tag = "role", rename_all = "lowercase")]
pub enum Message {
User {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
},
Assistant {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
tool_calls: Vec<ToolCall>,
},
System {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
},
#[serde(rename = "tool")]
ToolResult {
tool_call_id: String,
content: OneOrMany<ToolResultContent>,
},
}
正确的工具结果添加方式
工具结果应当使用专用角色添加:
chat_history.push(Message::ToolResult {
tool_call_id: tool_call.id.clone(),
content: OneOrMany::one(ToolResultContent::from(output)),
});
技术影响分析
这一修复将带来以下改进:
- 符合规范:与OpenAI和Qwen等主流LLM API的工具调用规范保持一致
- 避免循环:LLM能正确识别工具结果,不再陷入无限调用循环
- 可扩展性:为未来支持更复杂的工具调用场景奠定基础
- 互操作性:更容易与其他LLM系统集成和交互
实现建议
在实际实现时,还需要考虑:
- 向后兼容性:确保现有代码能处理新的消息类型
- 错误处理:工具调用失败时的消息处理机制
- 多工具支持:同时处理多个工具调用的结果
- 上下文管理:合理控制对话历史长度,避免因工具调用导致上下文膨胀
总结
在基于LLM的系统中,严格遵守消息角色规范对于工具调用的正确性至关重要。Rig项目的这一修复不仅解决了当前的问题,也为系统未来的功能扩展提供了更健壮的基础架构。对于开发者而言,理解LLM交互中的消息角色语义是构建可靠AI应用的关键技能之一。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.19 K

暂无简介
Dart
516
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193