Rig项目中LLM工具调用消息角色错误问题分析
2025-06-24 20:42:51作者:裴锟轩Denise
问题背景
在Rig项目(一个基于LLM的代理系统)中,发现了一个关于大型语言模型(LLM)工具调用的关键实现错误。当LLM调用外部工具并获取结果后,系统错误地将工具返回结果标记为"user"角色的消息,而非专用的"tool"或"function"角色消息。这一错误导致LLM无法正确识别工具返回结果,进而进入无限循环调用工具的异常状态。
技术细节分析
错误现象
从日志中可以清晰观察到问题现象:
- 用户发起初始请求
- LLM代理正确识别需要调用list_tables_tool工具
- 工具成功执行并返回结果(包含_sqlx_migrations和users两个表)
- 但系统将工具结果作为"user"消息加入对话历史
- LLM再次识别为需要调用工具,形成无限循环
根本原因
问题的核心在于违反了主流LLM API(包括OpenAI和Qwen等)关于工具调用的规范。正确的工具调用流程应该遵循以下消息序列:
- 用户消息(user)
- 助手消息(assistant)包含工具调用请求
- 工具消息(tool/function)包含工具执行结果
- 助手消息(assistant)给出最终响应
而当前实现错误地将第3步的工具结果消息标记为了用户消息,导致LLM无法正确理解上下文。
当前错误实现
项目当前的Message枚举定义如下:
#[derive(Clone, Debug, Deserialize, Serialize, PartialEq)]
#[serde(tag = "role", rename_all = "lowercase")]
pub enum Message {
User {
content: OneOrMany<UserContent>
},
Assistant {
content: OneOrMany<AssistantContent>,
},
}
工具结果被错误地添加为User消息:
chat_history.push(Message::User {
content: OneOrMany::many(tool_content)
});
解决方案
正确的消息结构设计
需要扩展Message枚举以支持工具角色消息。参考主流实现,建议采用如下结构:
#[derive(Debug, Serialize, Deserialize, PartialEq, Clone)]
#[serde(tag = "role", rename_all = "lowercase")]
pub enum Message {
User {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
},
Assistant {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
tool_calls: Vec<ToolCall>,
},
System {
content: String,
images: Option<Vec<String>>,
name: Option<String>,
},
#[serde(rename = "tool")]
ToolResult {
tool_call_id: String,
content: OneOrMany<ToolResultContent>,
},
}
正确的工具结果添加方式
工具结果应当使用专用角色添加:
chat_history.push(Message::ToolResult {
tool_call_id: tool_call.id.clone(),
content: OneOrMany::one(ToolResultContent::from(output)),
});
技术影响分析
这一修复将带来以下改进:
- 符合规范:与OpenAI和Qwen等主流LLM API的工具调用规范保持一致
- 避免循环:LLM能正确识别工具结果,不再陷入无限调用循环
- 可扩展性:为未来支持更复杂的工具调用场景奠定基础
- 互操作性:更容易与其他LLM系统集成和交互
实现建议
在实际实现时,还需要考虑:
- 向后兼容性:确保现有代码能处理新的消息类型
- 错误处理:工具调用失败时的消息处理机制
- 多工具支持:同时处理多个工具调用的结果
- 上下文管理:合理控制对话历史长度,避免因工具调用导致上下文膨胀
总结
在基于LLM的系统中,严格遵守消息角色规范对于工具调用的正确性至关重要。Rig项目的这一修复不仅解决了当前的问题,也为系统未来的功能扩展提供了更健壮的基础架构。对于开发者而言,理解LLM交互中的消息角色语义是构建可靠AI应用的关键技能之一。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
681
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
230
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
663