Ariadne Codegen 使用指南
1. 项目介绍
Ariadne Codegen 是一个用于生成完全类型化的 Python GraphQL 客户端的代码生成器。它通过读取 GraphQL 模式、查询和变更,生成一个包含异步方法的 Python 包,使得与任何 GraphQL API 的交互变得更加简单和类型安全。
主要特性
- 从 GraphQL 模式生成 Pydantic 模型。
- 为 GraphQL 结果生成 Pydantic 模型。
- 生成包含每个 GraphQL 操作的异步方法的客户端包。
- 支持插件系统,允许进一步定制和微调生成的 Python 代码。
2. 项目快速启动
安装
首先,使用 pip 安装 Ariadne Codegen:
pip install ariadne-codegen
配置
在项目的 pyproject.toml 文件中添加以下配置:
[tool.ariadne-codegen]
schema_path = "schema.graphql"
queries_path = "queries.graphql"
生成客户端
运行以下命令生成 GraphQL 客户端:
ariadne-codegen
使用生成的客户端
生成的客户端包默认名为 graphql_client,可以通过以下方式导入和使用:
from graphql_client import Client
async def fetch_data():
client = Client(url="https://example.com/graphql")
result = await client.query("GetHello")
print(result.hello)
3. 应用案例和最佳实践
案例:生成 Saleor 客户端
假设你正在开发一个与 Saleor 集成的 Python 服务,可以使用 Ariadne Codegen 生成 Saleor 客户端。
-
定义查询:在
queries.graphql文件中定义查询。query GetProduct($id: ID!) { product(id: $id) { id name price } } -
生成客户端:运行
ariadne-codegen生成客户端。 -
使用客户端:在 Python 代码中使用生成的客户端。
from graphql_client import Client async def get_product(product_id): client = Client(url="https://saleor.cloud/graphql/") result = await client.get_product(id=product_id) return result.product
最佳实践
- 保持查询简洁:避免在单个查询中请求过多的字段,以提高性能。
- 使用插件:根据需要使用插件来定制生成的代码。
- 版本控制:将生成的客户端代码纳入版本控制,以便跟踪变更。
4. 典型生态项目
1. Pydantic
Pydantic 是 Ariadne Codegen 生成代码的基础,用于定义和验证数据模型。Pydantic 提供了强大的类型提示和数据验证功能,使得生成的客户端代码更加健壮。
2. Httpx
Httpx 是 Ariadne Codegen 默认使用的 HTTP 客户端库,支持异步请求。Httpx 提供了现代化的 API,使得与 GraphQL API 的交互更加简单和高效。
3. Websockets
对于需要处理 GraphQL 订阅的场景,Ariadne Codegen 生成的客户端默认使用 Websockets 进行实时通信。
4. OpenTelemetry
Ariadne Codegen 支持 OpenTelemetry,可以通过配置启用性能跟踪,帮助你监控和优化 GraphQL 客户端的性能。
通过这些生态项目的支持,Ariadne Codegen 能够提供一个功能强大且易于扩展的 GraphQL 客户端生成解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00