Ariadne Codegen 使用指南
1. 项目介绍
Ariadne Codegen 是一个用于生成完全类型化的 Python GraphQL 客户端的代码生成器。它通过读取 GraphQL 模式、查询和变更,生成一个包含异步方法的 Python 包,使得与任何 GraphQL API 的交互变得更加简单和类型安全。
主要特性
- 从 GraphQL 模式生成 Pydantic 模型。
- 为 GraphQL 结果生成 Pydantic 模型。
- 生成包含每个 GraphQL 操作的异步方法的客户端包。
- 支持插件系统,允许进一步定制和微调生成的 Python 代码。
2. 项目快速启动
安装
首先,使用 pip 安装 Ariadne Codegen:
pip install ariadne-codegen
配置
在项目的 pyproject.toml 文件中添加以下配置:
[tool.ariadne-codegen]
schema_path = "schema.graphql"
queries_path = "queries.graphql"
生成客户端
运行以下命令生成 GraphQL 客户端:
ariadne-codegen
使用生成的客户端
生成的客户端包默认名为 graphql_client,可以通过以下方式导入和使用:
from graphql_client import Client
async def fetch_data():
client = Client(url="https://example.com/graphql")
result = await client.query("GetHello")
print(result.hello)
3. 应用案例和最佳实践
案例:生成 Saleor 客户端
假设你正在开发一个与 Saleor 集成的 Python 服务,可以使用 Ariadne Codegen 生成 Saleor 客户端。
-
定义查询:在
queries.graphql文件中定义查询。query GetProduct($id: ID!) { product(id: $id) { id name price } } -
生成客户端:运行
ariadne-codegen生成客户端。 -
使用客户端:在 Python 代码中使用生成的客户端。
from graphql_client import Client async def get_product(product_id): client = Client(url="https://saleor.cloud/graphql/") result = await client.get_product(id=product_id) return result.product
最佳实践
- 保持查询简洁:避免在单个查询中请求过多的字段,以提高性能。
- 使用插件:根据需要使用插件来定制生成的代码。
- 版本控制:将生成的客户端代码纳入版本控制,以便跟踪变更。
4. 典型生态项目
1. Pydantic
Pydantic 是 Ariadne Codegen 生成代码的基础,用于定义和验证数据模型。Pydantic 提供了强大的类型提示和数据验证功能,使得生成的客户端代码更加健壮。
2. Httpx
Httpx 是 Ariadne Codegen 默认使用的 HTTP 客户端库,支持异步请求。Httpx 提供了现代化的 API,使得与 GraphQL API 的交互更加简单和高效。
3. Websockets
对于需要处理 GraphQL 订阅的场景,Ariadne Codegen 生成的客户端默认使用 Websockets 进行实时通信。
4. OpenTelemetry
Ariadne Codegen 支持 OpenTelemetry,可以通过配置启用性能跟踪,帮助你监控和优化 GraphQL 客户端的性能。
通过这些生态项目的支持,Ariadne Codegen 能够提供一个功能强大且易于扩展的 GraphQL 客户端生成解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00