在LMDeploy中获取贪婪解码器的Token概率得分
2025-06-04 05:43:34作者:秋泉律Samson
背景介绍
在自然语言处理领域,语言模型生成文本时通常会采用不同的解码策略,其中贪婪解码(Greedy Decoding)是最基础的一种方法。贪婪解码在每一步都选择概率最高的token作为输出,这种策略简单高效,但缺乏多样性。
在实际应用中,我们有时不仅需要模型生成的文本内容,还需要了解每个输出token的概率得分(logprob)。这些得分信息对于分析模型行为、调试模型性能或进行后续处理都非常有价值。
问题分析
LMDeploy项目默认提供的接口中,使用贪婪解码时无法直接获取每个token的概率得分。虽然可以通过设置top_k=1的采样方式来近似贪婪解码,但这种方法存在两个问题:
- 当k=1时,所有输出token的得分都会被归一化为1,失去了实际概率意义
- 当k>1时,虽然可以得到概率得分,但输出结果可能与贪婪解码不同
解决方案
我们可以通过以下技术方案间接获取贪婪解码的token概率得分:
- 首先正常使用贪婪解码生成完整的输出序列
- 然后重新计算整个序列(包括输入prompt和输出)的logits
- 从logits中提取生成部分的概率分布
- 针对每个输出token,获取其在对应位置的概率得分
实现代码示例
import torch
from lmdeploy import pipeline, GenerationConfig
# 初始化pipeline
pipe = pipeline('/path/to/model/', log_level='INFO')
# 使用贪婪解码生成文本
messages = '你好' # 输入文本
output = pipe(messages, gen_config=GenerationConfig(top_k=1))
# 获取完整token序列
decorated = pipe.chat_template.messages2prompt(messages)
prompt_tokens = pipe.tokenizer.encode(decorated)
all_tokens = prompt_tokens + output.token_ids
# 计算完整序列的logits
all_logits = pipe.get_logits(all_tokens)
# 计算softmax概率
all_scores = torch.softmax(all_logits, dim=-1)
# 提取生成部分的概率得分
gen_scores = all_scores[0, len(prompt_tokens) - 1:-1]
# 打印每个token及其得分
for i, tk in enumerate(output.token_ids):
print(f"Token {i}: ID={tk}, Score={gen_scores[i, tk]}")
技术细节说明
- logits获取:
get_logits方法返回模型对输入序列的原始输出(logits),这是计算概率的基础 - 概率转换:使用softmax函数将logits转换为概率分布
- 序列对齐:需要精确计算生成部分在完整序列中的位置偏移
- 效率考虑:这种方法需要两次前向计算,会带来一定的性能开销
应用场景
这种技术可以应用于以下场景:
- 模型分析:通过token得分分析模型在哪些位置不确定或容易出错
- 结果过滤:基于得分阈值过滤低置信度的生成结果
- 调试工具:帮助开发者理解模型生成过程
- 质量评估:作为生成文本质量的量化指标之一
总结
虽然LMDeploy没有直接提供贪婪解码的token得分接口,但通过组合现有API,我们仍然可以获取这些有价值的信息。这种方法虽然有一定的计算开销,但对于需要深入分析模型行为的场景非常有用。开发者可以根据实际需求,在效率和信息丰富度之间做出权衡。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137