在LMDeploy中获取贪婪解码器的Token概率得分
2025-06-04 12:47:02作者:秋泉律Samson
背景介绍
在自然语言处理领域,语言模型生成文本时通常会采用不同的解码策略,其中贪婪解码(Greedy Decoding)是最基础的一种方法。贪婪解码在每一步都选择概率最高的token作为输出,这种策略简单高效,但缺乏多样性。
在实际应用中,我们有时不仅需要模型生成的文本内容,还需要了解每个输出token的概率得分(logprob)。这些得分信息对于分析模型行为、调试模型性能或进行后续处理都非常有价值。
问题分析
LMDeploy项目默认提供的接口中,使用贪婪解码时无法直接获取每个token的概率得分。虽然可以通过设置top_k=1的采样方式来近似贪婪解码,但这种方法存在两个问题:
- 当k=1时,所有输出token的得分都会被归一化为1,失去了实际概率意义
- 当k>1时,虽然可以得到概率得分,但输出结果可能与贪婪解码不同
解决方案
我们可以通过以下技术方案间接获取贪婪解码的token概率得分:
- 首先正常使用贪婪解码生成完整的输出序列
- 然后重新计算整个序列(包括输入prompt和输出)的logits
- 从logits中提取生成部分的概率分布
- 针对每个输出token,获取其在对应位置的概率得分
实现代码示例
import torch
from lmdeploy import pipeline, GenerationConfig
# 初始化pipeline
pipe = pipeline('/path/to/model/', log_level='INFO')
# 使用贪婪解码生成文本
messages = '你好' # 输入文本
output = pipe(messages, gen_config=GenerationConfig(top_k=1))
# 获取完整token序列
decorated = pipe.chat_template.messages2prompt(messages)
prompt_tokens = pipe.tokenizer.encode(decorated)
all_tokens = prompt_tokens + output.token_ids
# 计算完整序列的logits
all_logits = pipe.get_logits(all_tokens)
# 计算softmax概率
all_scores = torch.softmax(all_logits, dim=-1)
# 提取生成部分的概率得分
gen_scores = all_scores[0, len(prompt_tokens) - 1:-1]
# 打印每个token及其得分
for i, tk in enumerate(output.token_ids):
print(f"Token {i}: ID={tk}, Score={gen_scores[i, tk]}")
技术细节说明
- logits获取:
get_logits
方法返回模型对输入序列的原始输出(logits),这是计算概率的基础 - 概率转换:使用softmax函数将logits转换为概率分布
- 序列对齐:需要精确计算生成部分在完整序列中的位置偏移
- 效率考虑:这种方法需要两次前向计算,会带来一定的性能开销
应用场景
这种技术可以应用于以下场景:
- 模型分析:通过token得分分析模型在哪些位置不确定或容易出错
- 结果过滤:基于得分阈值过滤低置信度的生成结果
- 调试工具:帮助开发者理解模型生成过程
- 质量评估:作为生成文本质量的量化指标之一
总结
虽然LMDeploy没有直接提供贪婪解码的token得分接口,但通过组合现有API,我们仍然可以获取这些有价值的信息。这种方法虽然有一定的计算开销,但对于需要深入分析模型行为的场景非常有用。开发者可以根据实际需求,在效率和信息丰富度之间做出权衡。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K