Instaloader实现Instagram用户关注列表追踪与更新
2025-05-24 17:01:01作者:柯茵沙
概述
Instaloader作为一款强大的Instagram数据爬取工具,不仅可以下载图片和视频,还能获取用户社交关系数据。本文将详细介绍如何利用Instaloader实现Instagram用户关注列表的追踪与更新功能。
核心功能实现
获取当前关注列表
Instaloader提供了Profile.get_followees()方法,可以获取指定用户当前关注的所有账号:
import instaloader
loader = instaloader.Instaloader()
userProfile = Profile.from_username(loader.context, "目标用户名")
following = userProfile.get_followees()
追踪新关注用户
通过结合LatestStamps功能,我们可以识别新关注的用户:
from instaloader import LatestStamps
followingSet = set(following)
stamps = LatestStamps("用户关注记录.ini")
newFollowing = []
for user in followingSet:
if not (user.username in stamps.data.sections()):
stamps.save_profile_id(user.username, user.userid)
newFollowing.append(user)
这段代码会:
- 将当前关注列表转换为集合
- 加载之前的关注记录
- 对比找出新增关注的用户
- 将新用户记录保存到本地文件
检测取消关注的用户
同样利用集合运算,我们可以找出用户取消关注的账号:
profile_usernames_set = {profile.username for profile in followingSet}
latest_stamps_section_set = {profile for profile in stamps.data.sections()}
removed_usernames_set = latest_stamps_section_set - profile_usernames_set
for removed_username in removed_usernames_set:
stamps.data.remove_section(removed_username)
数据持久化方案
CSV文件输出
获取到变更数据后,可以使用Python标准库中的csv模块将结果输出为CSV文件:
import csv
with open('关注变更记录.csv', 'a', newline='') as csvfile:
writer = csv.writer(csvfile)
for user in newFollowing:
writer.writerow([user.username, "新关注", datetime.now()])
for user in removed_usernames_set:
writer.writerow([user, "取消关注", datetime.now()])
增量更新策略
建议采用以下策略实现高效更新:
- 定期执行脚本(如每天一次)
- 每次只记录变更部分
- 维护完整的当前关注列表快照
- 使用时间戳标记每次检查
注意事项
- 频繁请求可能触发Instagram的速率限制
- 需要妥善保存登录凭据
- 遵守Instagram的服务条款
- 考虑使用try-except处理网络异常
- 对于大量关注的用户,可能需要分批次处理
扩展应用
基于此功能可以进一步开发:
- 社交关系变化分析
- 粉丝增长统计
- 竞品账号监控
- 社交网络可视化
通过Instaloader提供的API,开发者可以灵活构建各种Instagram数据分析工具,满足不同的业务需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137