Godot-Jolt项目中SoftBody3D空间附着在导出构建中的问题解析
问题概述
在Godot-Jolt物理引擎项目中,开发者发现SoftBody3D节点的空间附着功能在编辑器模式下工作正常,但在导出构建(特别是移动平台)中会出现异常。具体表现为:当SoftBody3D节点通过多个固定点附着到其他节点(如MeshInstance或RigidBody)时,在编辑器模式下软体会正确跟随父节点移动,而在iOS和Android等移动平台的导出构建中,软体无法保持附着关系。
技术背景
SoftBody3D是Godot引擎中用于模拟可变形物体的节点类型,它允许开发者创建具有物理特性的柔软物体,如布料、橡胶等。空间附着功能是SoftBody3D的一个重要特性,它允许将软体上的特定顶点固定到场景中的其他空间节点上,这在模拟悬挂物(如篮球网)时非常有用。
问题现象
开发者报告的具体案例中,一个篮球网(SoftBody3D)通过32个固定点附着到篮球框(Node3D)上。在Mac上的编辑器模式下,当移动篮球框时,篮球网能正确跟随;但在移动设备上,篮球网无法保持附着状态,导致物理模拟失效。
问题根源
经过技术分析,这个问题实际上是一个长期存在于Godot引擎中的底层问题,与物理引擎实现无关。问题的本质在于:
- 空间附着属性在场景初始化时的加载顺序存在问题
- 在导出构建中,附着关系的建立时机不当,导致初始化失败
- 该问题不仅出现在Jolt物理后端,在Godot原生物理后端同样存在
临时解决方案
在等待官方修复的同时,开发者可以采用以下临时解决方案:
- 手动设置附着点:在节点ready后通过脚本动态设置附着关系
func _ready():
$SoftBody.set("attachments/0/point_index", 78)
$SoftBody.set("attachments/0/spatial_attachment_path", NodePath(".."))
$SoftBody.set("attachments/0/offset", Vector3(-0.262972, 0, 0.26296))
- 使用PhysicsServer API:直接通过PhysicsServer3D的soft_body_move_point方法控制固定点
官方修复进展
Godot引擎团队已经确认并修复了这个问题。修复方案主要调整了空间附着属性的初始化顺序和时机,确保在导出构建中也能正确建立附着关系。该修复将包含在未来的Godot版本更新中。
最佳实践建议
对于需要使用SoftBody3D空间附着功能的开发者,建议:
- 在关键版本发布前进行全面测试,特别是在目标平台上
- 考虑采用脚本动态设置附着点作为兼容性方案
- 关注Godot引擎更新日志,及时升级到包含修复的版本
- 对于复杂的软体模拟,可以考虑将关键附着点通过代码控制,增加可控性
总结
这个问题展示了游戏开发中跨平台一致性的挑战,即使是成熟的引擎也会存在平台特定的行为差异。通过理解问题本质和掌握临时解决方案,开发者可以在等待官方修复的同时继续推进项目开发。这也提醒我们在物理模拟等复杂功能实现时,需要在所有目标平台上进行充分验证。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









