CloudShuffleService 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
CloudShuffleService(CSS)是一个通用的远程 Shuffle 解决方案,用于计算引擎,如 Spark、Flink 和 MapReduce。它为这些计算引擎提供了可靠、高性能和弹性的数据 Shuffle 能力。Shuffled 数据会被推送到 CSS 集群,存储在磁盘或 HDFS 中,并且可以被计算引擎从 CSS 集群中获取。
该项目主要使用 Java 和 Scala 编程语言开发。
2. 项目使用的关键技术和框架
- Netty: 用于网络通信的基础框架。
- ZooKeeper: 用于服务注册和发现的分布式协调服务。
- HDFS: 用于存储数据的分布式文件系统。
- Maven: 用于构建和依赖管理的项目管理和构建自动化工具。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Java 8: CSS 需要 Java 8 环境。
- Scala 2.12 或 Scala 2.11: 根据您的需要选择一个版本。
- Maven: 用于构建项目。
- SSH: 用于在集群节点上远程执行命令。
安装步骤
步骤 1: 克隆项目
首先,从 GitHub 上克隆 CloudShuffleService 项目:
git clone https://github.com/bytedance/CloudShuffleService.git
步骤 2: 构建项目
进入项目目录,使用 Maven 构建项目:
cd CloudShuffleService
mvn clean package
如果您希望构建时不运行测试,可以使用以下命令:
mvn -DskipTests clean package
步骤 3: 创建可运行的分发包
在项目根目录下执行以下命令,创建 CSS 分发包:
./build.sh
这会生成一个 tgz 包,您可以将其复制到您希望部署 CSS 的节点上。
步骤 4: 部署 CSS 集群
将生成的 tgz 包放到集群的每个节点上,并解压缩到指定的目录。例如:
tar -xzf css-1.0.0-bin.tgz -C /path/to/css
设置环境变量 CSS_HOME 指向解压缩后的目录。
步骤 5: 配置 CSS 集群
编辑 $CSS_HOME/conf/css-config.sh 文件,根据您的需求配置 CSS Master 和 Worker 的 JVM 参数。
然后编辑 $CSS_HOME/conf/css-defaults.conf 文件,配置 CSS 集群的参数,如集群名称、ZooKeeper 地址等。
步骤 6: 启动 CSS 集群
根据您选择的部署模式(standalone 或 zookeeper),使用以下命令启动 CSS 集群:
# standalone 模式
cd $CSS_HOME; bash ./sbin/start-all.sh
# zookeeper 模式
cd $CSS_HOME; bash ./sbin/start-workers.sh
步骤 7: 配置 Spark 使用 CSS
将 CSS 客户端库复制到 Spark 的 jars 目录:
cp $CSS_HOME/client/spark-${version}/*.jar $SPARK_HOME/jars/
然后,在运行 Spark 任务时,添加以下配置:
--conf spark.css.cluster.name=<css cluster name> \
--conf spark.css.master.address=css://<masterIp>:<masterPort> \
--conf spark.shuffle.manager=org.apache.spark.shuffle.css.CssShuffleManager
如果是 ZooKeeper 模式,则需要添加 ZooKeeper 地址:
--conf spark.css.zookeeper.address="<ip1>:<port1>,<ip2>:<port2>,<ip3>:<port3>"
完成以上步骤后,您就可以开始使用 CloudShuffleService 进行数据 Shuffle 操作了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00