CloudShuffleService 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
CloudShuffleService(CSS)是一个通用的远程 Shuffle 解决方案,用于计算引擎,如 Spark、Flink 和 MapReduce。它为这些计算引擎提供了可靠、高性能和弹性的数据 Shuffle 能力。Shuffled 数据会被推送到 CSS 集群,存储在磁盘或 HDFS 中,并且可以被计算引擎从 CSS 集群中获取。
该项目主要使用 Java 和 Scala 编程语言开发。
2. 项目使用的关键技术和框架
- Netty: 用于网络通信的基础框架。
- ZooKeeper: 用于服务注册和发现的分布式协调服务。
- HDFS: 用于存储数据的分布式文件系统。
- Maven: 用于构建和依赖管理的项目管理和构建自动化工具。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Java 8: CSS 需要 Java 8 环境。
- Scala 2.12 或 Scala 2.11: 根据您的需要选择一个版本。
- Maven: 用于构建项目。
- SSH: 用于在集群节点上远程执行命令。
安装步骤
步骤 1: 克隆项目
首先,从 GitHub 上克隆 CloudShuffleService 项目:
git clone https://github.com/bytedance/CloudShuffleService.git
步骤 2: 构建项目
进入项目目录,使用 Maven 构建项目:
cd CloudShuffleService
mvn clean package
如果您希望构建时不运行测试,可以使用以下命令:
mvn -DskipTests clean package
步骤 3: 创建可运行的分发包
在项目根目录下执行以下命令,创建 CSS 分发包:
./build.sh
这会生成一个 tgz 包,您可以将其复制到您希望部署 CSS 的节点上。
步骤 4: 部署 CSS 集群
将生成的 tgz 包放到集群的每个节点上,并解压缩到指定的目录。例如:
tar -xzf css-1.0.0-bin.tgz -C /path/to/css
设置环境变量 CSS_HOME 指向解压缩后的目录。
步骤 5: 配置 CSS 集群
编辑 $CSS_HOME/conf/css-config.sh 文件,根据您的需求配置 CSS Master 和 Worker 的 JVM 参数。
然后编辑 $CSS_HOME/conf/css-defaults.conf 文件,配置 CSS 集群的参数,如集群名称、ZooKeeper 地址等。
步骤 6: 启动 CSS 集群
根据您选择的部署模式(standalone 或 zookeeper),使用以下命令启动 CSS 集群:
# standalone 模式
cd $CSS_HOME; bash ./sbin/start-all.sh
# zookeeper 模式
cd $CSS_HOME; bash ./sbin/start-workers.sh
步骤 7: 配置 Spark 使用 CSS
将 CSS 客户端库复制到 Spark 的 jars 目录:
cp $CSS_HOME/client/spark-${version}/*.jar $SPARK_HOME/jars/
然后,在运行 Spark 任务时,添加以下配置:
--conf spark.css.cluster.name=<css cluster name> \
--conf spark.css.master.address=css://<masterIp>:<masterPort> \
--conf spark.shuffle.manager=org.apache.spark.shuffle.css.CssShuffleManager
如果是 ZooKeeper 模式,则需要添加 ZooKeeper 地址:
--conf spark.css.zookeeper.address="<ip1>:<port1>,<ip2>:<port2>,<ip3>:<port3>"
完成以上步骤后,您就可以开始使用 CloudShuffleService 进行数据 Shuffle 操作了。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00