CloudShuffleService 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
CloudShuffleService(CSS)是一个通用的远程 Shuffle 解决方案,用于计算引擎,如 Spark、Flink 和 MapReduce。它为这些计算引擎提供了可靠、高性能和弹性的数据 Shuffle 能力。Shuffled 数据会被推送到 CSS 集群,存储在磁盘或 HDFS 中,并且可以被计算引擎从 CSS 集群中获取。
该项目主要使用 Java 和 Scala 编程语言开发。
2. 项目使用的关键技术和框架
- Netty: 用于网络通信的基础框架。
- ZooKeeper: 用于服务注册和发现的分布式协调服务。
- HDFS: 用于存储数据的分布式文件系统。
- Maven: 用于构建和依赖管理的项目管理和构建自动化工具。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Java 8: CSS 需要 Java 8 环境。
- Scala 2.12 或 Scala 2.11: 根据您的需要选择一个版本。
- Maven: 用于构建项目。
- SSH: 用于在集群节点上远程执行命令。
安装步骤
步骤 1: 克隆项目
首先,从 GitHub 上克隆 CloudShuffleService 项目:
git clone https://github.com/bytedance/CloudShuffleService.git
步骤 2: 构建项目
进入项目目录,使用 Maven 构建项目:
cd CloudShuffleService
mvn clean package
如果您希望构建时不运行测试,可以使用以下命令:
mvn -DskipTests clean package
步骤 3: 创建可运行的分发包
在项目根目录下执行以下命令,创建 CSS 分发包:
./build.sh
这会生成一个 tgz 包,您可以将其复制到您希望部署 CSS 的节点上。
步骤 4: 部署 CSS 集群
将生成的 tgz 包放到集群的每个节点上,并解压缩到指定的目录。例如:
tar -xzf css-1.0.0-bin.tgz -C /path/to/css
设置环境变量 CSS_HOME
指向解压缩后的目录。
步骤 5: 配置 CSS 集群
编辑 $CSS_HOME/conf/css-config.sh
文件,根据您的需求配置 CSS Master 和 Worker 的 JVM 参数。
然后编辑 $CSS_HOME/conf/css-defaults.conf
文件,配置 CSS 集群的参数,如集群名称、ZooKeeper 地址等。
步骤 6: 启动 CSS 集群
根据您选择的部署模式(standalone 或 zookeeper),使用以下命令启动 CSS 集群:
# standalone 模式
cd $CSS_HOME; bash ./sbin/start-all.sh
# zookeeper 模式
cd $CSS_HOME; bash ./sbin/start-workers.sh
步骤 7: 配置 Spark 使用 CSS
将 CSS 客户端库复制到 Spark 的 jars 目录:
cp $CSS_HOME/client/spark-${version}/*.jar $SPARK_HOME/jars/
然后,在运行 Spark 任务时,添加以下配置:
--conf spark.css.cluster.name=<css cluster name> \
--conf spark.css.master.address=css://<masterIp>:<masterPort> \
--conf spark.shuffle.manager=org.apache.spark.shuffle.css.CssShuffleManager
如果是 ZooKeeper 模式,则需要添加 ZooKeeper 地址:
--conf spark.css.zookeeper.address="<ip1>:<port1>,<ip2>:<port2>,<ip3>:<port3>"
完成以上步骤后,您就可以开始使用 CloudShuffleService 进行数据 Shuffle 操作了。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









