EMDM 项目亮点解析
2025-06-04 05:04:16作者:羿妍玫Ivan
1. 项目基础介绍
EMDM(Efficient Motion Diffusion Model)是一个用于快速、高质量人类运动生成的开源项目。该项目旨在解决现有运动扩散模型在保证生成速度与运动质量之间的平衡问题。通过引入条件去噪扩散 GAN,EMDM 能够在较少的采样步骤中实现更快的运动生成,同时保持运动的高保真度和多样性。
2. 项目代码目录及介绍
项目的主要代码目录如下:
assets:包含示例文本提示和动作名称文件等资源。data_loaders:负责数据加载的模块。dataset:定义了数据集处理的类。diffusion:包含了扩散模型的实现代码。eval:评估模型的性能。model:定义了模型的结构。models:包含了多种模型的实现。options:配置文件,用于设置训练和采样时的参数。sample:用于生成运动的代码。score_sde:包含了分数 SDE 的实现。train:训练模型的代码。utils:一些工具函数和类。EMA.py:实现了 EMA(指数移动平均)的相关功能。eval_humanact12_uestc.py、eval_humanml.py等:特定数据集的评估脚本。sample_mdm.py、train_ddgan.py等:模型采样和训练的主脚本。
3. 项目亮点功能拆解
- 快速生成:EMDM 通过优化扩散过程,减少了采样步骤,从而加快了运动生成的速度。
- 高质量生成:通过引入条件去噪扩散 GAN 和运动几何损失,提高了生成运动的质量和多样性。
- 灵活性:支持多种数据集,如 HumanML3D、KIT-ML 和 HumanAct12Poses,使得模型能够适应不同的运动生成需求。
4. 项目主要技术亮点拆解
- 条件去噪扩散 GAN:该模型结合了去噪扩散过程和生成对抗网络,能够更好地捕捉多模态数据分布。
- 运动几何损失:在训练过程中引入了运动几何损失,有效提高了运动质量和训练效率。
- 指数移动平均(EMA):通过 EMA 策略,稳定了模型训练过程,提高了生成运动的一致性。
5. 与同类项目对比的亮点
相比同类项目,EMDM 的亮点在于:
- 效率:在保证运动质量的前提下,生成速度更快。
- 质量:生成的运动更加自然,减少了不希望的伪影。
- 通用性:支持多种数据集,适用于更广泛的应用场景。
- 易用性:项目结构清晰,文档齐全,易于上手和使用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143