PHP_CodeSniffer 技术文档
1. 安装指南
下载安装
最简单的开始使用 PHP_CodeSniffer 的方式是下载对应的 Phar 文件:
# 使用 curl 下载
curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar
curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcbf.phar
# 或者使用 wget 下载
wget https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar
wget https://squizlabs.github.io/PHP_CodeSniffer/phpcbf.phar
# 测试下载的 PHAR 文件
php phpcs.phar -h
php phpcbf.phar -h
使用 Composer 安装
如果你使用 Composer,可以通过以下命令全局安装 PHP_CodeSniffer:
composer global require "squizlabs/php_codesniffer=*"
确保你的 PATH 中包含了 Composer 的 bin 目录。默认值是 ~/.composer/vendor/bin/,但你可以通过运行 composer global config bin-dir --absolute 来检查你需要使用的值。
或者,你也可以在你的 composer.json 文件中添加 squizlabs/php_codesniffer 的依赖。例如:
{
"require-dev": {
"squizlabs/php_codesniffer": "3.*"
}
}
然后,你将能够从 vendor bin 目录运行 PHP_CodeSniffer:
./vendor/bin/phpcs -h
./vendor/bin/phpcbf -h
使用 Phive 安装
如果你使用 Phive,可以通过以下命令将 PHP_CodeSniffer 安装为项目工具:
phive install phpcs
phive install phpcbf
然后,你将能够从 tools 目录运行 PHP_CodeSniffer:
./tools/phpcs -h
./tools/phpcbf -h
使用 PEAR 安装
如果你使用 PEAR,可以通过 PEAR 安装器安装 PHP_CodeSniffer。这将使得 phpcs 和 phpcbf 命令立即可用。首先确保你已经安装了 PEAR,然后运行以下命令:
pear install PHP_CodeSniffer
使用 Git Clone 安装
你也可以下载 PHP_CodeSniffer 源代码并直接从 Git 克隆运行 phpcs 和 phpcbf 命令:
git clone https://github.com/squizlabs/PHP_CodeSniffer.git
cd PHP_CodeSniffer
php bin/phpcs -h
php bin/phpcbf -h
2. 项目使用说明
PHP_CodeSniffer 的默认编码标准是 PEAR 编码标准。要检查一个文件,只需指定文件位置:
phpcs /path/to/code/myfile.php
如果要检查整个目录,可以指定目录位置:
phpcs /path/to/code-directory
如果你想使用 PSR-12 编码标准检查代码,可以使用 --standard 命令行参数:
phpcs --standard=PSR12 /path/to/code-directory
如果 PHP_CodeSniffer 发现任何编码标准错误,运行命令后会显示报告。
完整的用法信息和示例报告可在 用法页面 上找到。
3. 项目 API 使用文档
PHP_CodeSniffer 提供了丰富的 API 用于自定义和扩展其功能。开发者可以通过编写自定义的 sniffs 来扩展 PHP_CodeSniffer 的检查能力。API 文档可以在 PHP_CodeSniffer GitHub Wiki 上找到。
4. 项目安装方式
请参考上述的“安装指南”部分,了解 PHP_CodeSniffer 的多种安装方式。根据你的项目需求和开发环境,选择最适合你的安装方式。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00