PHP_CodeSniffer 技术文档
1. 安装指南
下载安装
最简单的开始使用 PHP_CodeSniffer 的方式是下载对应的 Phar 文件:
# 使用 curl 下载
curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar
curl -OL https://squizlabs.github.io/PHP_CodeSniffer/phpcbf.phar
# 或者使用 wget 下载
wget https://squizlabs.github.io/PHP_CodeSniffer/phpcs.phar
wget https://squizlabs.github.io/PHP_CodeSniffer/phpcbf.phar
# 测试下载的 PHAR 文件
php phpcs.phar -h
php phpcbf.phar -h
使用 Composer 安装
如果你使用 Composer,可以通过以下命令全局安装 PHP_CodeSniffer:
composer global require "squizlabs/php_codesniffer=*"
确保你的 PATH 中包含了 Composer 的 bin 目录。默认值是 ~/.composer/vendor/bin/,但你可以通过运行 composer global config bin-dir --absolute 来检查你需要使用的值。
或者,你也可以在你的 composer.json 文件中添加 squizlabs/php_codesniffer 的依赖。例如:
{
"require-dev": {
"squizlabs/php_codesniffer": "3.*"
}
}
然后,你将能够从 vendor bin 目录运行 PHP_CodeSniffer:
./vendor/bin/phpcs -h
./vendor/bin/phpcbf -h
使用 Phive 安装
如果你使用 Phive,可以通过以下命令将 PHP_CodeSniffer 安装为项目工具:
phive install phpcs
phive install phpcbf
然后,你将能够从 tools 目录运行 PHP_CodeSniffer:
./tools/phpcs -h
./tools/phpcbf -h
使用 PEAR 安装
如果你使用 PEAR,可以通过 PEAR 安装器安装 PHP_CodeSniffer。这将使得 phpcs 和 phpcbf 命令立即可用。首先确保你已经安装了 PEAR,然后运行以下命令:
pear install PHP_CodeSniffer
使用 Git Clone 安装
你也可以下载 PHP_CodeSniffer 源代码并直接从 Git 克隆运行 phpcs 和 phpcbf 命令:
git clone https://github.com/squizlabs/PHP_CodeSniffer.git
cd PHP_CodeSniffer
php bin/phpcs -h
php bin/phpcbf -h
2. 项目使用说明
PHP_CodeSniffer 的默认编码标准是 PEAR 编码标准。要检查一个文件,只需指定文件位置:
phpcs /path/to/code/myfile.php
如果要检查整个目录,可以指定目录位置:
phpcs /path/to/code-directory
如果你想使用 PSR-12 编码标准检查代码,可以使用 --standard 命令行参数:
phpcs --standard=PSR12 /path/to/code-directory
如果 PHP_CodeSniffer 发现任何编码标准错误,运行命令后会显示报告。
完整的用法信息和示例报告可在 用法页面 上找到。
3. 项目 API 使用文档
PHP_CodeSniffer 提供了丰富的 API 用于自定义和扩展其功能。开发者可以通过编写自定义的 sniffs 来扩展 PHP_CodeSniffer 的检查能力。API 文档可以在 PHP_CodeSniffer GitHub Wiki 上找到。
4. 项目安装方式
请参考上述的“安装指南”部分,了解 PHP_CodeSniffer 的多种安装方式。根据你的项目需求和开发环境,选择最适合你的安装方式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00