Apache RocketMQ TieredStore内存泄漏问题分析与解决方案
问题背景
在Apache RocketMQ的TieredStore存储架构中,当启用IndexStoreService并且使用PosixFileSegment作为TieredMessageStore的文件段实现时,系统会出现严重的内存泄漏问题。这个问题会导致直接内存持续增长,最终可能引发OOM异常或触发shutdownHook。
问题现象
在生产环境中部署了基于TieredStore架构的RocketMQ集群,将冷数据卸载到HDD硬盘并使用PosixFileSegment实现。经过约16小时的持续消息生产后,监控显示直接内存使用量以稳定速率持续增长,每次增长约570MB,恰好与压缩后的IndexFile大小一致。
根本原因分析
通过深入代码分析,发现问题根源在于PosixFileSegment.commit0方法中不恰当的FileChannel使用方式。具体表现为:
- 在IndexFile上传过程中,FileChannel.write(buffer)操作会分配与buffer大小相同的DirectByteBuffer
- 这些DirectByteBuffer作为ThreadLocal变量存储在sun.nio.ch.Util.BufferCache中
- 由于这些缓冲区由线程池中的线程持有,且线程不会被销毁,导致直接内存无法释放
技术细节
问题的核心在于Java NIO的实现机制。当调用FileChannel.write(buffer)时:
- 系统会查找足够大的DirectByteBuffer来存储buffer数据,如果没有则分配新的
- 将数据从DirectByteBuffer写入pagecache
- 将DirectByteBuffer返回BufferCache但不释放
在RocketMQ的实现中,commit0方法通过线程池执行,这些线程长期存活,导致DirectByteBuffer不断累积。
解决方案探讨
社区提出了几种可能的解决方案:
- 限制bufferCommitExecutor线程池大小
- 通过jdk.nio.maxCachedBufferSize参数限制BufferCache大小
- 限制PosixFileSegment.commit0方法中inputStream的大小
- 使用MappedByteBuffer替代FileChannel
- 实现DirectIO直接访问方案
经过讨论和测试,最终选择了MappedByteBuffer方案,因为:
- FileChannel.transferFrom性能无法满足要求
- DirectIO实现需要额外依赖库
- MappedByteBuffer在测试中表现出良好的性能
性能考量
虽然MappedByteBuffer方案会影响pagecache并可能与commit log产生资源争用,但在实际压力测试中表现良好,能够支持约60k的producer TPS。对于SSD转HDD场景,专家建议可以考虑Java directIO库来彻底解决pagecache浪费内存的问题。
总结
这个问题揭示了在实现分层存储架构时,对底层IO操作细节考虑的重要性。特别是在处理大文件传输时,需要特别注意内存管理策略。RocketMQ社区通过深入分析和多方案验证,最终找到了平衡性能和资源消耗的解决方案,为类似场景提供了有价值的参考。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00