Apache RocketMQ TieredStore内存泄漏问题分析与解决方案
问题背景
在Apache RocketMQ的TieredStore存储架构中,当启用IndexStoreService并且使用PosixFileSegment作为TieredMessageStore的文件段实现时,系统会出现严重的内存泄漏问题。这个问题会导致直接内存持续增长,最终可能引发OOM异常或触发shutdownHook。
问题现象
在生产环境中部署了基于TieredStore架构的RocketMQ集群,将冷数据卸载到HDD硬盘并使用PosixFileSegment实现。经过约16小时的持续消息生产后,监控显示直接内存使用量以稳定速率持续增长,每次增长约570MB,恰好与压缩后的IndexFile大小一致。
根本原因分析
通过深入代码分析,发现问题根源在于PosixFileSegment.commit0方法中不恰当的FileChannel使用方式。具体表现为:
- 在IndexFile上传过程中,FileChannel.write(buffer)操作会分配与buffer大小相同的DirectByteBuffer
- 这些DirectByteBuffer作为ThreadLocal变量存储在sun.nio.ch.Util.BufferCache中
- 由于这些缓冲区由线程池中的线程持有,且线程不会被销毁,导致直接内存无法释放
技术细节
问题的核心在于Java NIO的实现机制。当调用FileChannel.write(buffer)时:
- 系统会查找足够大的DirectByteBuffer来存储buffer数据,如果没有则分配新的
- 将数据从DirectByteBuffer写入pagecache
- 将DirectByteBuffer返回BufferCache但不释放
在RocketMQ的实现中,commit0方法通过线程池执行,这些线程长期存活,导致DirectByteBuffer不断累积。
解决方案探讨
社区提出了几种可能的解决方案:
- 限制bufferCommitExecutor线程池大小
- 通过jdk.nio.maxCachedBufferSize参数限制BufferCache大小
- 限制PosixFileSegment.commit0方法中inputStream的大小
- 使用MappedByteBuffer替代FileChannel
- 实现DirectIO直接访问方案
经过讨论和测试,最终选择了MappedByteBuffer方案,因为:
- FileChannel.transferFrom性能无法满足要求
- DirectIO实现需要额外依赖库
- MappedByteBuffer在测试中表现出良好的性能
性能考量
虽然MappedByteBuffer方案会影响pagecache并可能与commit log产生资源争用,但在实际压力测试中表现良好,能够支持约60k的producer TPS。对于SSD转HDD场景,专家建议可以考虑Java directIO库来彻底解决pagecache浪费内存的问题。
总结
这个问题揭示了在实现分层存储架构时,对底层IO操作细节考虑的重要性。特别是在处理大文件传输时,需要特别注意内存管理策略。RocketMQ社区通过深入分析和多方案验证,最终找到了平衡性能和资源消耗的解决方案,为类似场景提供了有价值的参考。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0118DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









