Apache RocketMQ TieredStore内存泄漏问题分析与解决方案
问题背景
在Apache RocketMQ的TieredStore存储架构中,当启用IndexStoreService并且使用PosixFileSegment作为TieredMessageStore的文件段实现时,系统会出现严重的内存泄漏问题。这个问题会导致直接内存持续增长,最终可能引发OOM异常或触发shutdownHook。
问题现象
在生产环境中部署了基于TieredStore架构的RocketMQ集群,将冷数据卸载到HDD硬盘并使用PosixFileSegment实现。经过约16小时的持续消息生产后,监控显示直接内存使用量以稳定速率持续增长,每次增长约570MB,恰好与压缩后的IndexFile大小一致。
根本原因分析
通过深入代码分析,发现问题根源在于PosixFileSegment.commit0方法中不恰当的FileChannel使用方式。具体表现为:
- 在IndexFile上传过程中,FileChannel.write(buffer)操作会分配与buffer大小相同的DirectByteBuffer
- 这些DirectByteBuffer作为ThreadLocal变量存储在sun.nio.ch.Util.BufferCache中
- 由于这些缓冲区由线程池中的线程持有,且线程不会被销毁,导致直接内存无法释放
技术细节
问题的核心在于Java NIO的实现机制。当调用FileChannel.write(buffer)时:
- 系统会查找足够大的DirectByteBuffer来存储buffer数据,如果没有则分配新的
- 将数据从DirectByteBuffer写入pagecache
- 将DirectByteBuffer返回BufferCache但不释放
在RocketMQ的实现中,commit0方法通过线程池执行,这些线程长期存活,导致DirectByteBuffer不断累积。
解决方案探讨
社区提出了几种可能的解决方案:
- 限制bufferCommitExecutor线程池大小
- 通过jdk.nio.maxCachedBufferSize参数限制BufferCache大小
- 限制PosixFileSegment.commit0方法中inputStream的大小
- 使用MappedByteBuffer替代FileChannel
- 实现DirectIO直接访问方案
经过讨论和测试,最终选择了MappedByteBuffer方案,因为:
- FileChannel.transferFrom性能无法满足要求
- DirectIO实现需要额外依赖库
- MappedByteBuffer在测试中表现出良好的性能
性能考量
虽然MappedByteBuffer方案会影响pagecache并可能与commit log产生资源争用,但在实际压力测试中表现良好,能够支持约60k的producer TPS。对于SSD转HDD场景,专家建议可以考虑Java directIO库来彻底解决pagecache浪费内存的问题。
总结
这个问题揭示了在实现分层存储架构时,对底层IO操作细节考虑的重要性。特别是在处理大文件传输时,需要特别注意内存管理策略。RocketMQ社区通过深入分析和多方案验证,最终找到了平衡性能和资源消耗的解决方案,为类似场景提供了有价值的参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00