Django Ninja 中实现多对多字段计数的两种方案
2025-05-28 19:17:32作者:裘晴惠Vivianne
在 Django Ninja 项目中处理模型关系时,我们经常需要获取多对多(ManyToMany)关系的计数信息。本文将介绍两种在 Django Ninja 中优雅实现多对多字段计数的方法,帮助开发者更好地构建 API 响应。
方案一:使用模型属性方法
第一种方案是通过在 Django 模型中定义计算属性来实现:
class Profile(models.Model):
following = models.ManyToManyField(...)
@property
def following_count(self):
return self.following.filter(...).count()
然后在 Schema 中声明对应的字段:
class ProfileSchemaLogin(ModelSchema):
following_count: Optional[int] = None
这种方式的优点是:
- 逻辑封装在模型层,符合 Django 的设计哲学
- 可以在项目任何地方复用该计算属性
- 实现简单直观,易于维护
方案二:使用 Schema 解析器
第二种方案是通过 Schema 的解析器(resolver)来实现:
class ProfileSchemaLogin(ModelSchema):
following_count: Optional[int] = None
@staticmethod
def resolve_following_count(obj):
return obj.following.filter(...).count()
这种方式的优势在于:
- 将计数逻辑与 API 层绑定,适合特定场景下的定制
- 可以灵活添加更多过滤条件
- 不污染模型层,保持模型简洁
方案对比与选择建议
两种方案各有适用场景:
- 如果计数逻辑会在多个地方使用,建议采用模型属性方案
- 如果计数逻辑是特定于 API 的,或者需要动态过滤条件,建议使用解析器方案
- 对于简单项目,模型属性方案更为直接
- 对于复杂项目,解析器方案提供了更好的灵活性
性能考虑
无论采用哪种方案,都需要注意 N+1 查询问题。建议在查询时使用 annotate 或 prefetch_related 来优化性能:
Profile.objects.annotate(following_count=Count('following'))
这样可以在单个查询中获取所有计数信息,避免为每个对象单独查询数据库。
总结
在 Django Ninja 中处理多对多字段计数时,开发者可以根据项目需求选择模型属性或 Schema 解析器方案。理解这两种方法的优缺点,能够帮助我们构建更高效、更易维护的 API 接口。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869