FastApi-RESTful 项目中的请求耗时监控中间件详解
2025-07-04 15:54:26作者:虞亚竹Luna
前言
在现代Web应用开发中,性能监控是保证应用质量的重要环节。FastApi-RESTful项目提供了一个轻量级的请求耗时监控中间件,能够帮助开发者快速定位性能瓶颈,监控潜在的性能退化问题。本文将详细介绍该中间件的使用方法和实现原理。
中间件核心功能
FastApi-RESTful的fastapi_restful.timing模块提供了两种主要功能:
- 全局请求耗时监控:通过中间件自动记录每个请求的总耗时
- 分段耗时记录:在请求处理过程中手动记录特定阶段的耗时
安装与基础使用
首先确保你已经安装了FastApi-RESTful库。中间件的使用非常简单:
from fastapi import FastAPI
from fastapi_restful.timing import add_timing_middleware
app = FastAPI()
add_timing_middleware(app)
这样配置后,你的应用就会自动打印每个请求的耗时信息。
配置选项详解
add_timing_middleware函数提供了多个配置参数:
1. 自定义日志输出
默认使用print输出日志,但你可以传入任何可调用对象:
import logging
logger = logging.getLogger(__name__)
add_timing_middleware(app, record=logger.info)
2. 路由前缀
当应用有多个挂载点时,可以使用前缀区分:
add_timing_middleware(app, prefix="/api/v1")
3. 排除特定路由
可以排除不需要监控的路由:
add_timing_middleware(app, exclude="healthcheck")
分段耗时记录
除了全局监控,你还可以在请求处理过程中记录特定阶段的耗时:
from fastapi import Request
from fastapi_restful.timing import record_timing
@app.get("/complex-operation")
async def complex_operation(request: Request):
# 第一阶段操作
await do_something()
record_timing(request, "after first stage")
# 第二阶段操作
await do_something_else()
record_timing(request, "after second stage")
return {"status": "complete"}
性能考量
这个中间件设计时就考虑了性能因素:
- 极低的开销,适合生产环境使用
- 不依赖复杂的外部服务
- 简单的日志输出机制
与其他性能分析工具对比
虽然这个中间件功能简单,但它有独特的优势:
| 特性 | FastApi-RESTful中间件 | 专业性能分析工具(如yappi) |
|---|---|---|
| 生产环境适用性 | ✅ 适合 | ❌ 通常仅用于开发 |
| 开销 | 极低 | 较高 |
| 功能复杂度 | 简单 | 复杂 |
| 协程支持 | ✅ 原生支持 | 需要特定版本支持 |
最佳实践建议
- 在生产环境使用简单的日志级别控制
- 开发环境可以结合更专业的分析工具
- 对关键业务接口添加分段监控
- 定期分析日志中的耗时趋势
结语
FastApi-RESTful的请求耗时监控中间件提供了一个简单而有效的性能监控方案。它特别适合需要轻量级监控的生产环境,以及快速定位性能问题的开发场景。通过合理配置和使用分段记录功能,开发者可以获得足够详细的性能数据,而不会对应用性能造成显著影响。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
268
2.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
435
Ascend Extension for PyTorch
Python
100
126
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
605
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1