Anchor项目构建缓存问题的分析与解决方案
问题背景
在使用Anchor框架进行区块链智能合约开发时,开发者可能会遇到一个影响开发效率的问题:当交替使用anchor build和anchor test命令时,每次都会触发完整的重新编译过程,导致构建时间显著增加。这个问题在多个操作系统环境下都能复现,包括原生Debian系统以及Docker容器环境。
问题表现
具体表现为:
- 首次运行
anchor build需要编译256个包,耗时约15秒 - 再次运行
anchor build只需编译4个包,耗时1秒(正常缓存行为) - 运行
anchor test时会重新编译所有依赖(256个包+590个测试包) - 再次运行
anchor test仍然会触发完整重新编译
问题根源分析
经过深入分析,这个问题源于Anchor框架内部的工作机制:
-
构建与测试的分离:
anchor build和anchor test使用不同的构建目标和特性标志,导致Rust的构建系统无法共享缓存。 -
IDL生成的影响:
anchor build在生成IDL时会运行带有idl-build特性的cargo test,而普通的anchor test则运行不带此特性的测试,这种特性标志的变化会触发缓存失效。 -
模板设计因素:使用
--test-template rust创建的模板默认使用cargo test命令,而不是专门为区块链程序优化的cargo test-sbf命令。
解决方案
针对这个问题,开发者可以采用以下几种解决方案:
-
使用
--no-idl标志:在运行anchor test时添加此标志可以跳过IDL生成步骤,避免因IDL生成导致的缓存失效。这适用于已经生成过IDL且接口没有变化的情况。 -
直接使用
cargo test-sbf:这是专门为区块链程序优化的测试命令,能够更好地利用构建缓存。这也是Anchor新模板(如mollusk模板)推荐的做法。 -
统一构建环境:尽量保持开发过程中构建环境的一致性,避免频繁在
build和test命令间切换。
最佳实践建议
-
在开发初期频繁修改代码时,可以优先使用
cargo test-sbf进行测试,获得更快的迭代速度。 -
在需要生成或更新IDL时,再使用完整的
anchor test命令。 -
考虑使用更新的Anchor模板,这些模板已经优化了测试命令的使用方式。
总结
构建缓存问题是影响开发效率的重要因素。理解Anchor框架内部的工作机制有助于开发者选择最适合当前开发阶段的构建和测试策略。通过合理使用cargo test-sbf和--no-idl标志,开发者可以显著减少等待构建的时间,提升开发体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00