在ggml中实现自定义张量运算:以矩阵乘法为例
背景介绍
ggml是一个专注于机器学习模型推理的轻量级张量库。它提供了多种内置的张量运算操作,但有时开发者需要实现一些特定的自定义运算。本文将详细介绍如何在ggml中实现自定义张量运算,特别是当输入和输出张量形状不同时的情况。
自定义运算的基础
ggml最初提供的自定义运算接口(如ggml_map_custom1-3)有一个限制:要求输出张量与输入张量形状相同。这在实现某些运算时会造成不便,例如矩阵乘法这种典型的输入输出形状不同的运算。
解决方案演进
随着项目发展,ggml在后续版本中增加了更灵活的自定义运算接口。新接口允许开发者定义输入和输出形状不同的运算,这为实现矩阵乘法等运算提供了可能。
实现自定义矩阵乘法
要实现自定义矩阵乘法,我们需要关注以下几个关键点:
-
张量形状处理:输入矩阵A的形状为[m×k],矩阵B的形状为[k×n],输出矩阵应为[m×n]
-
内存布局:ggml使用特定的内存布局存储张量,自定义运算需要正确处理这种布局
-
并行计算:为提高性能,应考虑利用多线程并行计算
-
数据类型支持:需要处理ggml支持的各种数据类型(F32,F16等)
实现步骤详解
-
定义运算函数:创建处理实际计算的核心函数,该函数需要:
- 接收输入张量指针
- 处理不同数据类型
- 正确计算输出值
- 考虑内存对齐要求
-
注册自定义运算:使用ggml提供的接口注册新运算,包括:
- 前向计算函数
- 反向传播函数(如需训练)
- 运算元数据(名称、输入输出要求等)
-
形状推导:实现形状推导函数,根据输入张量形状计算输出形状
-
性能优化:针对特定硬件平台进行优化,如:
- SIMD指令利用
- 缓存友好访问模式
- 计算任务分块
实际应用考虑
在实际应用中,自定义矩阵乘法可能需要考虑以下扩展功能:
-
批量处理:支持批量矩阵乘法运算
-
稀疏矩阵:优化稀疏矩阵的特殊情况
-
混合精度:支持不同精度输入的计算
-
特殊激活:在乘法后接特殊激活函数
总结
ggml通过不断完善的接口为开发者提供了实现自定义张量运算的灵活性。理解ggml的张量内存布局和计算模型是成功实现自定义运算的关键。矩阵乘法作为一个典型案例,展示了如何处理输入输出形状不同的运算场景。开发者可以根据实际需求,基于这些原理实现各种特殊的张量运算。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00