在ggml中实现自定义张量运算:以矩阵乘法为例
背景介绍
ggml是一个专注于机器学习模型推理的轻量级张量库。它提供了多种内置的张量运算操作,但有时开发者需要实现一些特定的自定义运算。本文将详细介绍如何在ggml中实现自定义张量运算,特别是当输入和输出张量形状不同时的情况。
自定义运算的基础
ggml最初提供的自定义运算接口(如ggml_map_custom1-3)有一个限制:要求输出张量与输入张量形状相同。这在实现某些运算时会造成不便,例如矩阵乘法这种典型的输入输出形状不同的运算。
解决方案演进
随着项目发展,ggml在后续版本中增加了更灵活的自定义运算接口。新接口允许开发者定义输入和输出形状不同的运算,这为实现矩阵乘法等运算提供了可能。
实现自定义矩阵乘法
要实现自定义矩阵乘法,我们需要关注以下几个关键点:
-
张量形状处理:输入矩阵A的形状为[m×k],矩阵B的形状为[k×n],输出矩阵应为[m×n]
-
内存布局:ggml使用特定的内存布局存储张量,自定义运算需要正确处理这种布局
-
并行计算:为提高性能,应考虑利用多线程并行计算
-
数据类型支持:需要处理ggml支持的各种数据类型(F32,F16等)
实现步骤详解
-
定义运算函数:创建处理实际计算的核心函数,该函数需要:
- 接收输入张量指针
- 处理不同数据类型
- 正确计算输出值
- 考虑内存对齐要求
-
注册自定义运算:使用ggml提供的接口注册新运算,包括:
- 前向计算函数
- 反向传播函数(如需训练)
- 运算元数据(名称、输入输出要求等)
-
形状推导:实现形状推导函数,根据输入张量形状计算输出形状
-
性能优化:针对特定硬件平台进行优化,如:
- SIMD指令利用
- 缓存友好访问模式
- 计算任务分块
实际应用考虑
在实际应用中,自定义矩阵乘法可能需要考虑以下扩展功能:
-
批量处理:支持批量矩阵乘法运算
-
稀疏矩阵:优化稀疏矩阵的特殊情况
-
混合精度:支持不同精度输入的计算
-
特殊激活:在乘法后接特殊激活函数
总结
ggml通过不断完善的接口为开发者提供了实现自定义张量运算的灵活性。理解ggml的张量内存布局和计算模型是成功实现自定义运算的关键。矩阵乘法作为一个典型案例,展示了如何处理输入输出形状不同的运算场景。开发者可以根据实际需求,基于这些原理实现各种特殊的张量运算。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00