CVAT项目v2.25.0版本发布:增强标注功能与质量评估优化
CVAT(Computer Vision Annotation Tool)是一个开源的计算机视觉标注工具,广泛应用于机器学习数据标注领域。它提供了丰富的标注功能、格式支持和协作能力,是计算机视觉研究人员和工程师的重要工具。近日,CVAT发布了v2.25.0版本,带来了一系列功能增强和质量改进。
核心功能更新
原生函数命令行支持
本次更新在CLI(命令行界面)中新增了对原生函数的操作命令。这一改进使得开发者能够更高效地通过命令行管理CVAT中的函数资源,为自动化工作流提供了更好的支持。对于需要批量处理或集成CVAT到现有系统的用户来说,这一功能将显著提升工作效率。
Ultralytics YOLO格式增强
在数据标注格式支持方面,v2.25.0版本对Ultralytics YOLO格式进行了重要改进:
-
格式重命名:原先的"YOLOv8格式"现在统一更名为"Ultralytics YOLO格式",这反映了该格式对YOLO系列模型的通用支持,而不仅限于v8版本。
-
跟踪支持:新版本为Ultralytics YOLO格式添加了对目标跟踪(tracks)的支持。这意味着现在可以导出包含目标ID信息的标注数据,这对于视频分析等需要追踪目标随时间变化的场景尤为重要。
-
旋转框兼容性:修复了导出/导入过程中旋转框(rotated boxes)方向信息的问题,确保了标注数据的准确性。
-
数据集处理优化:解决了当同时存在训练集和默认数据集时的导出问题,提高了数据处理的可靠性。
质量评估改进
在标注质量评估方面,v2.25.0对空帧处理逻辑进行了重要调整:
- 将
match_empty_frames质量设置更名为empty_is_annotated - 新设置会将所有空帧纳入最终评估指标,而不仅仅是匹配的空帧
- 这一改变使得精确度(Precision)等指标更具代表性和实用性
这一改进特别适用于那些需要评估标注完整性的场景,能够更全面地反映标注质量。
性能与稳定性提升
本次更新还包含了一些重要的稳定性修复:
- 修复了删除帧时可能出现的问题,提高了数据管理的可靠性
- 优化了YOLO格式处理逻辑,确保数据导出的稳定性
这些改进使得CVAT在处理大规模数据集时更加稳定可靠。
总结
CVAT v2.25.0版本通过增强命令行支持、改进YOLO格式兼容性和优化质量评估逻辑,进一步提升了这款开源标注工具的功能性和实用性。这些更新特别有利于需要进行大规模数据标注、目标跟踪任务或自动化工作流的用户。随着计算机视觉应用的不断发展,CVAT持续迭代的功能使其保持在行业前沿,为研究人员和工程师提供了强大的支持工具。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00