CVAT中自定义人体关键点标注的方法解析
2025-05-17 05:06:13作者:凌朦慧Richard
背景介绍
CVAT作为一款开源的计算机视觉标注工具,广泛应用于各类图像和视频标注任务。在人体姿态估计等场景中,关键点标注是常见需求。标准数据集如COCO定义了17个人体关键点,但在实际项目中,研究人员可能需要标注更多关键点以满足特定需求。
自定义关键点标注方案
CVAT提供了灵活的自定义骨架功能,允许用户完全按照项目需求定义关键点数量和连接关系。这一功能突破了标准数据集的限制,为特定研究场景提供了便利。
操作步骤详解
-
创建自定义骨架:在CVAT标注界面中,选择创建新骨架类型,而非直接使用预设模型。
-
定义关键点:用户可以自由添加任意数量的关键点,并为每个关键点指定名称和属性。例如,除了标准的17个关键点外,可以添加手指关节、面部细节点等。
-
设置连接关系:根据解剖学知识或研究需求,定义关键点之间的连接方式,形成完整的骨架结构。
-
保存模板:完成定义后,可将自定义骨架保存为模板,便于后续项目重复使用。
技术优势
-
灵活性:不受限于任何标准数据集格式,完全根据项目需求定制。
-
可扩展性:随着研究深入,可随时调整和增加关键点数量。
-
兼容性:自定义标注数据可导出为多种格式,便于后续模型训练。
应用场景
-
精细姿态估计:需要标注手指、面部微表情等细节的研究。
-
特定领域分析:如医疗康复中的关节运动分析、体育动作分解等专业场景。
-
多模态研究:结合其他传感器数据需要特殊关键点标注的跨模态研究。
最佳实践建议
-
在项目开始前,明确标注需求,设计合理的关键点体系。
-
建立详细的标注规范文档,确保多人协作时的一致性。
-
对于复杂场景,考虑分阶段标注,先完成基础关键点再添加细节。
通过CVAT的自定义骨架功能,研究人员可以突破标准数据集的限制,为特定研究场景创建最适合的标注方案,为计算机视觉模型的训练提供更精准的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869