Probabilistic U-Net 项目教程
2024-09-19 23:50:59作者:柏廷章Berta
1. 项目目录结构及介绍
probabilistic_unet/
├── data/
│ └── (预处理的数据文件)
├── models/
│ ├── probabilistic_unet.py
│ └── unet.py
├── utils/
│ └── (辅助函数和工具)
├── config/
│ └── config.yaml
├── train.py
├── test.py
├── README.md
└── requirements.txt
目录结构介绍
- data/: 存放预处理的数据文件,通常是经过处理的图像和标签数据。
- models/: 包含项目的核心模型文件,如
probabilistic_unet.py
和unet.py
。 - utils/: 存放辅助函数和工具,如数据加载、数据预处理等。
- config/: 存放项目的配置文件
config.yaml
,用于定义训练和测试的参数。 - train.py: 项目的启动文件,用于训练模型。
- test.py: 用于测试和评估模型的文件。
- README.md: 项目的说明文档,包含项目的基本信息和使用指南。
- requirements.txt: 列出了项目依赖的Python包。
2. 项目的启动文件介绍
train.py
train.py
是项目的启动文件,用于训练 Probabilistic U-Net 模型。以下是该文件的主要功能和结构:
import torch
from models.probabilistic_unet import ProbabilisticUnet
from utils.data_loader import get_data_loader
from config.config import load_config
def main():
# 加载配置文件
config = load_config('config/config.yaml')
# 获取数据加载器
train_loader = get_data_loader(config['data'])
# 初始化模型
net = ProbabilisticUnet(config['model'])
net.to(config['device'])
# 定义优化器
optimizer = torch.optim.Adam(net.parameters(), lr=config['optimizer']['lr'])
# 训练循环
for epoch in range(config['epochs']):
for step, (patch, mask) in enumerate(train_loader):
patch = patch.to(config['device'])
mask = mask.to(config['device'])
mask = torch.unsqueeze(mask, 1)
net.forward(patch, mask, training=True)
elbo = net.elbo(mask)
reg_loss = net.regularization_loss()
loss = -elbo + config['beta'] * reg_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if __name__ == "__main__":
main()
主要功能
- 加载配置文件: 使用
load_config
函数从config/config.yaml
中加载配置参数。 - 数据加载: 使用
get_data_loader
函数获取训练数据加载器。 - 模型初始化: 初始化 Probabilistic U-Net 模型,并将其移动到指定的设备(如 GPU)。
- 优化器定义: 使用 Adam 优化器,并根据配置文件中的学习率进行初始化。
- 训练循环: 进行模型的训练,计算损失并更新模型参数。
3. 项目的配置文件介绍
config/config.yaml
config.yaml
是项目的配置文件,用于定义训练和测试的参数。以下是配置文件的示例内容:
data:
path: 'data/'
batch_size: 8
num_workers: 4
model:
no_channels: 1
no_classes: 2
filter_list: [64, 128, 256, 512]
latent_dim: 6
no_fcomb_convs: 4
beta: 1e-5
optimizer:
lr: 1e-4
device: 'cuda'
epochs: 100
配置项介绍
- data: 定义数据路径、批量大小和数据加载的线程数。
- model: 定义模型的参数,如输入通道数、类别数、卷积核数量、潜在维度等。
- optimizer: 定义优化器的学习率。
- device: 指定训练设备,如
'cuda'
或'cpu'
。 - epochs: 定义训练的轮数。
通过配置文件,用户可以方便地调整训练和测试的参数,而无需修改代码。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1