使用PyKAN进行糖尿病分类任务的技术实践
2025-05-14 00:41:51作者:晏闻田Solitary
项目背景
PyKAN是一个基于Kolmogorov-Arnold网络(KAN)的Python实现,该项目提供了一种新型的神经网络架构,相比传统MLP网络在某些任务上展现出更好的性能。本文将分享如何使用PyKAN进行糖尿病分类任务的技术实践过程。
数据准备与预处理
在糖尿病分类任务中,我们使用了一个中等规模的数据集,包含多个与糖尿病相关的临床特征指标。数据预处理阶段主要包括:
- 数据清洗:检查并处理缺失值和异常值
- 特征标准化:对连续型特征进行标准化处理
- 类别平衡:检查目标变量的分布情况
模型构建与训练
PyKAN模型的构建过程相对简单直观。我们首先初始化一个KAN模型,指定输入维度和输出维度:
model = KAN(width=[8,1], grid=5, k=3)
其中width参数指定了网络结构,这里使用8个输入特征和1个输出(二分类)。grid和k参数控制着B样条的网格分辨率和阶数。
训练过程采用分阶段策略:
- 初始训练阶段:使用相对较大的学习率快速收敛
- 精细调整阶段:降低学习率进行微调
- 剪枝阶段:去除不重要的神经元和连接
遇到的问题与解决方案
在模型开发过程中,我们遇到了几个关键问题:
-
数值不稳定问题:在自动符号化(auto_symbolic)阶段出现NaN值
- 解决方案:检查训练过程是否收敛,适当调整学习率和训练轮次
- 增加数据标准化处理,确保输入特征在合理范围内
-
分类性能优化:
- 调整网络结构和超参数
- 尝试不同的激活函数组合
- 实施早停策略防止过拟合
-
可视化问题:
- 分类任务的决策边界可视化与回归任务有所不同
- 采用概率输出和置信区间来展示模型预测
模型性能与结果
经过调优后的模型在测试集上达到了约80%的准确率,展示了KAN网络在医疗分类任务中的潜力。模型的可解释性较强,能够提供各个特征对预测结果的贡献度。
技术建议
对于想要使用PyKAN进行类似分类任务的开发者,我们建议:
- 从小规模网络开始,逐步增加复杂度
- 密切监控训练过程中的损失值和指标变化
- 合理设置剪枝阈值,平衡模型复杂度和性能
- 分类任务中特别注意输出层的设计和损失函数选择
总结
本次实践验证了PyKAN在医疗分类任务中的可行性,虽然遇到了一些技术挑战,但通过系统的方法论和实验最终获得了不错的结果。KAN网络的可解释性特点使其在需要模型透明度的医疗领域具有独特优势。未来可以进一步探索更大规模数据集和更复杂网络结构下的表现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5