使用PyKAN进行糖尿病分类任务的技术实践
2025-05-14 12:13:18作者:晏闻田Solitary
项目背景
PyKAN是一个基于Kolmogorov-Arnold网络(KAN)的Python实现,该项目提供了一种新型的神经网络架构,相比传统MLP网络在某些任务上展现出更好的性能。本文将分享如何使用PyKAN进行糖尿病分类任务的技术实践过程。
数据准备与预处理
在糖尿病分类任务中,我们使用了一个中等规模的数据集,包含多个与糖尿病相关的临床特征指标。数据预处理阶段主要包括:
- 数据清洗:检查并处理缺失值和异常值
- 特征标准化:对连续型特征进行标准化处理
- 类别平衡:检查目标变量的分布情况
模型构建与训练
PyKAN模型的构建过程相对简单直观。我们首先初始化一个KAN模型,指定输入维度和输出维度:
model = KAN(width=[8,1], grid=5, k=3)
其中width参数指定了网络结构,这里使用8个输入特征和1个输出(二分类)。grid和k参数控制着B样条的网格分辨率和阶数。
训练过程采用分阶段策略:
- 初始训练阶段:使用相对较大的学习率快速收敛
- 精细调整阶段:降低学习率进行微调
- 剪枝阶段:去除不重要的神经元和连接
遇到的问题与解决方案
在模型开发过程中,我们遇到了几个关键问题:
-
数值不稳定问题:在自动符号化(auto_symbolic)阶段出现NaN值
- 解决方案:检查训练过程是否收敛,适当调整学习率和训练轮次
- 增加数据标准化处理,确保输入特征在合理范围内
-
分类性能优化:
- 调整网络结构和超参数
- 尝试不同的激活函数组合
- 实施早停策略防止过拟合
-
可视化问题:
- 分类任务的决策边界可视化与回归任务有所不同
- 采用概率输出和置信区间来展示模型预测
模型性能与结果
经过调优后的模型在测试集上达到了约80%的准确率,展示了KAN网络在医疗分类任务中的潜力。模型的可解释性较强,能够提供各个特征对预测结果的贡献度。
技术建议
对于想要使用PyKAN进行类似分类任务的开发者,我们建议:
- 从小规模网络开始,逐步增加复杂度
- 密切监控训练过程中的损失值和指标变化
- 合理设置剪枝阈值,平衡模型复杂度和性能
- 分类任务中特别注意输出层的设计和损失函数选择
总结
本次实践验证了PyKAN在医疗分类任务中的可行性,虽然遇到了一些技术挑战,但通过系统的方法论和实验最终获得了不错的结果。KAN网络的可解释性特点使其在需要模型透明度的医疗领域具有独特优势。未来可以进一步探索更大规模数据集和更复杂网络结构下的表现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1