使用PyKAN进行糖尿病分类任务的技术实践
2025-05-14 21:56:02作者:晏闻田Solitary
项目背景
PyKAN是一个基于Kolmogorov-Arnold网络(KAN)的Python实现,该项目提供了一种新型的神经网络架构,相比传统MLP网络在某些任务上展现出更好的性能。本文将分享如何使用PyKAN进行糖尿病分类任务的技术实践过程。
数据准备与预处理
在糖尿病分类任务中,我们使用了一个中等规模的数据集,包含多个与糖尿病相关的临床特征指标。数据预处理阶段主要包括:
- 数据清洗:检查并处理缺失值和异常值
- 特征标准化:对连续型特征进行标准化处理
- 类别平衡:检查目标变量的分布情况
模型构建与训练
PyKAN模型的构建过程相对简单直观。我们首先初始化一个KAN模型,指定输入维度和输出维度:
model = KAN(width=[8,1], grid=5, k=3)
其中width参数指定了网络结构,这里使用8个输入特征和1个输出(二分类)。grid和k参数控制着B样条的网格分辨率和阶数。
训练过程采用分阶段策略:
- 初始训练阶段:使用相对较大的学习率快速收敛
- 精细调整阶段:降低学习率进行微调
- 剪枝阶段:去除不重要的神经元和连接
遇到的问题与解决方案
在模型开发过程中,我们遇到了几个关键问题:
-
数值不稳定问题:在自动符号化(auto_symbolic)阶段出现NaN值
- 解决方案:检查训练过程是否收敛,适当调整学习率和训练轮次
- 增加数据标准化处理,确保输入特征在合理范围内
-
分类性能优化:
- 调整网络结构和超参数
- 尝试不同的激活函数组合
- 实施早停策略防止过拟合
-
可视化问题:
- 分类任务的决策边界可视化与回归任务有所不同
- 采用概率输出和置信区间来展示模型预测
模型性能与结果
经过调优后的模型在测试集上达到了约80%的准确率,展示了KAN网络在医疗分类任务中的潜力。模型的可解释性较强,能够提供各个特征对预测结果的贡献度。
技术建议
对于想要使用PyKAN进行类似分类任务的开发者,我们建议:
- 从小规模网络开始,逐步增加复杂度
- 密切监控训练过程中的损失值和指标变化
- 合理设置剪枝阈值,平衡模型复杂度和性能
- 分类任务中特别注意输出层的设计和损失函数选择
总结
本次实践验证了PyKAN在医疗分类任务中的可行性,虽然遇到了一些技术挑战,但通过系统的方法论和实验最终获得了不错的结果。KAN网络的可解释性特点使其在需要模型透明度的医疗领域具有独特优势。未来可以进一步探索更大规模数据集和更复杂网络结构下的表现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217