基于cpp-taskflow实现异步任务竞争执行与动态取消机制
2025-05-21 19:55:17作者:贡沫苏Truman
背景介绍
在科学计算领域,数值积分是一个常见但计算密集型的任务。当面对复杂的被积函数时,不同的数值积分算法在不同区域可能表现出截然不同的性能特征。cpp-taskflow作为一个高效的并行任务调度库,为解决这类问题提供了强大的工具。
问题场景
考虑一个二维数值积分问题,需要在网格点上并行计算积分值。对于每个网格点,我们同时采用四种不同的数值积分算法进行计算。由于算法特性差异,某些算法在特定区域收敛快,而在其他区域可能较慢。我们的目标是:
- 对每个网格点并行启动四种积分算法
- 收集最先完成的两个算法结果
- 及时取消剩余两个仍在执行的算法任务
- 整个过程需要完全异步执行
技术挑战
实现上述需求面临几个关键技术难点:
- 任务原子性:cpp-taskflow的任务一旦开始执行就无法被外部中断
- 竞争条件:需要确保只有最先完成的两个结果被采纳
- 资源释放:需要优雅地取消未完成的任务以避免资源浪费
解决方案
任务设计模式
我们可以采用"协作式取消"的设计模式,在任务内部实现检查点机制:
std::atomic<int> finished_count{0};
std::vector<std::future<double>> results;
auto algorithm_task = [&](auto integral_func, double x) {
double result;
while(finished_count < 2) {
// 分步执行积分计算
bool done = make_integration_progress(integral_func, x, result);
if(done) {
int count = finished_count.fetch_add(1);
if(count < 2) {
results[count] = result;
}
return; // 主动退出任务
}
}
};
任务拓扑结构
构建两级并行任务结构:
- 第一级:网格点间的并行计算
- 第二级:每个网格点内算法间的并行计算
tf::Taskflow taskflow;
// 对每个网格点创建任务组
for(double x : grid_points) {
auto [A, B] = taskflow.emplace(
[&](){ algorithm_task(integral_0, x); },
[&](){ algorithm_task(integral_1, x); }
);
// 添加更多算法任务...
}
结果收集机制
使用原子变量和共享容器实现线程安全的结果收集:
struct PointResult {
std::mutex mtx;
std::vector<double> values;
std::atomic<int> count{0};
};
void process_point(double x, PointResult& res) {
if(res.count.fetch_add(1) < 2) {
std::lock_guard<std::mutex> lock(res.mtx);
res.values.push_back(calculate(x));
}
}
性能优化建议
- 任务粒度控制:将积分计算分解为多个检查点,提高取消响应速度
- 负载均衡:根据历史数据动态调整各算法的资源分配
- 内存局部性:合理安排网格点计算顺序以提高缓存命中率
应用扩展
这种模式不仅适用于数值积分,还可应用于:
- 多算法竞赛式机器学习模型训练
- 分布式系统中的冗余计算
- 实时系统中的超时处理
总结
通过cpp-taskflow的任务编排能力和合理的协作式取消设计,我们实现了高效的竞争式并行计算框架。这种模式特别适合算法性能特征随输入变化显著的场景,能够在保证结果可靠性的同时最大化计算效率。
在实际应用中,开发者需要根据具体问题特点调整任务粒度和检查点频率,在响应速度和计算效率之间取得平衡。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137