Higress AI Intent插件多场景意图识别能力增强实践
2025-06-09 11:49:46作者:晏闻田Solitary
背景介绍
在现代微服务架构中,意图识别作为AI能力的重要入口,其准确性和灵活性直接影响着后续服务的路由决策和响应质量。Higress作为阿里巴巴开源的云原生网关,其AI Intent插件原本仅支持单一意图识别,难以满足复杂业务场景下的多样化需求。
需求分析
在实际生产环境中,AI意图识别往往需要同时处理多个维度的判断:
- 业务领域识别:用于智能路由到专业领域模型(如金融问题路由到金融专用模型)
- 缓存控制判断:识别请求是否具有时效性,决定是否启用缓存机制
- 数据分析分类:为后续的日志分析和数据挖掘提供结构化标签
这种多维度并行识别的需求促使我们对Higress AI Intent插件进行功能增强。
技术方案设计
配置结构优化
新版本插件采用了更符合直觉的YAML配置结构:
prompt: |
作为智能分类助手,你需要根据用户查询和预设分类确定问题类别...
categories:
- useFor: intent-route # 用途标识
options:
- Finance
- E-commerce
- Law
- useFor: disable-cache
options:
- Time-sensitive
- Innovative-response
llm:
serviceName: "qwen.dns"
model: "qwen-long"
关键改进点包括:
- 支持多用途分类定义
- 每个分类场景可独立配置选项集
- 优化了提示词模板的灵活性
响应格式规范
为确保机器可读性,我们设计了严格的响应格式规范:
- {"useFor": "scene1", "result": "result1"}
- {"useFor": "scene2", result: "result2"}
这种行式JSON格式既保持了可读性,又便于程序解析,同时确保不同用途的结果相互独立。
属性存储机制
识别结果通过Wasm标准接口存储:
proxywasm.SetProperty([]string{"intent_category:intent-route"}, "Finance")
采用命名空间前缀intent_category:实现多结果的隔离存储,下游插件可通过标准接口获取特定用途的分类结果。
实现细节
多分类并行处理
核心处理流程分为三个阶段:
- 模板渲染:将用户问题动态插入预设提示词模板
- LLM交互:与配置的大模型服务进行对话
- 结果解析:按规范提取多维度分类结果
错误处理机制
新增了严格的格式校验:
- 检查每行是否符合JSON格式
- 验证useFor是否与配置匹配
- 确认result值在预设options范围内
当出现格式错误时,插件会记录详细错误日志并跳过该条结果,不影响其他有效结果的存储。
应用场景示例
智能路由场景
categories:
- useFor: model-selection
options:
- Coding:claude-model
- Medical:med-llm
- General:qwen-model
网关可根据识别结果自动选择最适合的专业模型处理请求。
缓存控制场景
categories:
- useFor: cache-control
options:
- Real-time:no-cache
- Static:enable-cache
动态识别请求特性,优化缓存策略,平衡响应速度与资源消耗。
性能考量
- 批量处理:单次LLM调用完成所有分类,减少交互延迟
- 结果缓存:相同问题模板的识别结果可缓存复用
- 超时控制:严格限制LLM响应时间,避免阻塞请求链路
总结
Higress AI Intent插件的多场景意图识别增强,通过精心设计的配置结构和响应规范,实现了业务逻辑与技术实现的优雅解耦。这种设计既保留了简单场景的易用性,又为复杂需求提供了足够的扩展空间,是AI能力与API网关深度集成的优秀实践。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25