Higress AI Intent插件多场景意图识别能力增强实践
2025-06-09 13:33:09作者:晏闻田Solitary
背景介绍
在现代微服务架构中,意图识别作为AI能力的重要入口,其准确性和灵活性直接影响着后续服务的路由决策和响应质量。Higress作为阿里巴巴开源的云原生网关,其AI Intent插件原本仅支持单一意图识别,难以满足复杂业务场景下的多样化需求。
需求分析
在实际生产环境中,AI意图识别往往需要同时处理多个维度的判断:
- 业务领域识别:用于智能路由到专业领域模型(如金融问题路由到金融专用模型)
- 缓存控制判断:识别请求是否具有时效性,决定是否启用缓存机制
- 数据分析分类:为后续的日志分析和数据挖掘提供结构化标签
这种多维度并行识别的需求促使我们对Higress AI Intent插件进行功能增强。
技术方案设计
配置结构优化
新版本插件采用了更符合直觉的YAML配置结构:
prompt: |
作为智能分类助手,你需要根据用户查询和预设分类确定问题类别...
categories:
- useFor: intent-route # 用途标识
options:
- Finance
- E-commerce
- Law
- useFor: disable-cache
options:
- Time-sensitive
- Innovative-response
llm:
serviceName: "qwen.dns"
model: "qwen-long"
关键改进点包括:
- 支持多用途分类定义
- 每个分类场景可独立配置选项集
- 优化了提示词模板的灵活性
响应格式规范
为确保机器可读性,我们设计了严格的响应格式规范:
- {"useFor": "scene1", "result": "result1"}
- {"useFor": "scene2", result: "result2"}
这种行式JSON格式既保持了可读性,又便于程序解析,同时确保不同用途的结果相互独立。
属性存储机制
识别结果通过Wasm标准接口存储:
proxywasm.SetProperty([]string{"intent_category:intent-route"}, "Finance")
采用命名空间前缀intent_category:实现多结果的隔离存储,下游插件可通过标准接口获取特定用途的分类结果。
实现细节
多分类并行处理
核心处理流程分为三个阶段:
- 模板渲染:将用户问题动态插入预设提示词模板
- LLM交互:与配置的大模型服务进行对话
- 结果解析:按规范提取多维度分类结果
错误处理机制
新增了严格的格式校验:
- 检查每行是否符合JSON格式
- 验证useFor是否与配置匹配
- 确认result值在预设options范围内
当出现格式错误时,插件会记录详细错误日志并跳过该条结果,不影响其他有效结果的存储。
应用场景示例
智能路由场景
categories:
- useFor: model-selection
options:
- Coding:claude-model
- Medical:med-llm
- General:qwen-model
网关可根据识别结果自动选择最适合的专业模型处理请求。
缓存控制场景
categories:
- useFor: cache-control
options:
- Real-time:no-cache
- Static:enable-cache
动态识别请求特性,优化缓存策略,平衡响应速度与资源消耗。
性能考量
- 批量处理:单次LLM调用完成所有分类,减少交互延迟
- 结果缓存:相同问题模板的识别结果可缓存复用
- 超时控制:严格限制LLM响应时间,避免阻塞请求链路
总结
Higress AI Intent插件的多场景意图识别增强,通过精心设计的配置结构和响应规范,实现了业务逻辑与技术实现的优雅解耦。这种设计既保留了简单场景的易用性,又为复杂需求提供了足够的扩展空间,是AI能力与API网关深度集成的优秀实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
298
暂无简介
Dart
710
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
179
65
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
413
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
422
130