Apache Doris 集成存储计算集群手动部署指南
2025-06-27 18:24:44作者:曹令琨Iris
概述
Apache Doris 是一款高性能、实时的分析型数据库,采用 MPP(大规模并行处理)架构设计。本文将详细介绍如何手动部署 Apache Doris 的集成存储计算集群,帮助用户快速搭建生产环境。
集群架构简介
Apache Doris 采用集成存储计算架构,主要包含两类节点:
- FE(Frontend)节点:负责元数据管理、集群管理、查询解析和调度
- BE(Backend)节点:负责数据存储和计算执行
这种架构设计使得 Doris 能够同时提供高效的查询性能和强大的扩展能力。
部署前准备
在开始部署前,请确保已完成以下准备工作:
- 硬件环境检查:确认服务器配置满足要求
- 操作系统检查:确保系统参数配置正确
- 网络规划:确定各节点IP地址和端口分配
- 软件准备:下载对应版本的 Doris 安装包
详细部署步骤
第一步:部署 FE Master 节点
1. 创建元数据目录
建议将 FE 元数据存储在独立磁盘上,与 BE 数据存储分离:
# 创建专用元数据目录
mkdir -p /data/doris-meta
# 创建符号链接(如使用默认目录结构)
ln -s /data/doris-meta /path/to/doris/fe/doris-meta
2. 配置 FE 参数
编辑 conf/fe.conf 文件,关键配置项包括:
# JVM 堆内存设置(生产环境建议16GB以上)
JAVA_OPTS="-Xmx16384m -XX:+UseMembar -XX:SurvivorRatio=8"
# 表名大小写敏感设置(建议设为1,不敏感)
lower_case_table_names = 1
# 网络CIDR配置(根据实际网络规划)
priority_networks = 10.1.3.0/24
# JDK路径设置
JAVA_HOME = /usr/local/jdk
3. 启动 FE 进程
./bin/start_fe.sh --daemon
4. 验证 FE 状态
使用 MySQL 客户端连接并检查状态:
mysql -uroot -P9030 -h127.0.0.1
> SHOW FRONTENDS\G
重点关注 Alive、Join 和 IsMaster 字段状态。
第二步:扩展 FE 集群(可选)
生产环境建议部署至少3个 FE 节点(1 Master + 2 Follower)。
1. 添加 Follower 节点
在 Master FE 上执行:
ALTER SYSTEM ADD FOLLOWER "follower_ip:9010";
2. 启动 Follower 节点
在新节点上执行:
./bin/start_fe.sh --helper master_ip:9010 --daemon
3. 验证集群状态
SHOW FRONTENDS;
第三步:部署 BE 节点
1. 创建数据目录
mkdir -p /data1/doris-storage
mkdir -p /data2/doris-storage
2. 配置 BE 参数
编辑 conf/be.conf:
# 存储路径配置(支持多磁盘)
storage_root_path=/data1/doris-storage,medium:HDD;/data2/doris-storage,medium:SSD
# 网络CIDR配置
priority_networks = 10.1.3.0/24
3. 注册 BE 节点
在 FE 上执行:
ALTER SYSTEM ADD BACKEND "be_ip:9050";
4. 启动 BE 进程
./bin/start_be.sh --daemon
5. 验证 BE 状态
SHOW BACKENDS;
第四步:集群完整性验证
1. 修改 root 密码
SET PASSWORD = PASSWORD('your_new_password');
2. 创建测试表
CREATE DATABASE test_db;
USE test_db;
CREATE TABLE test_table (
id INT,
name VARCHAR(50),
value DOUBLE
)
DISTRIBUTED BY HASH(id) BUCKETS 10;
3. 数据操作测试
-- 插入数据
INSERT INTO test_table VALUES
(1, 'item1', 10.5),
(2, 'item2', 20.3);
-- 查询验证
SELECT * FROM test_table;
生产环境建议
- FE 节点:至少部署3个节点,确保高可用
- BE 节点:根据数据量和查询负载确定节点数量
- 监控:部署监控系统,定期检查集群健康状态
- 备份:建立定期元数据备份机制
常见问题排查
- FE 启动失败:检查
log/fe.log中的错误信息 - BE 无法加入集群:确认网络连通性和端口开放情况
- 查询性能问题:检查 BE 节点负载和数据分布情况
总结
通过本文的步骤,您已经成功部署了一个 Apache Doris 集成存储计算集群。这种架构设计使得 Doris 能够充分发挥 MPP 架构的优势,提供高性能的分析能力。在实际生产环境中,建议根据业务需求进一步优化配置参数,并建立完善的监控和维护机制。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873