KEDA在大规模集群中的性能优化与配置指南
2025-05-26 19:02:44作者:邓越浪Henry
背景介绍
KEDA(Kubernetes Event-driven Autoscaling)是一个流行的Kubernetes自动扩展控制器,它通过将事件源与工作负载解耦来实现精细化的自动扩展。然而,在Flipkart这样的大型生产环境中,当集群中部署了300多个ScaledObject时,我们遇到了HPA(Horizontal Pod Autoscaler)功能显著退化的问题,扩展事件无法及时响应计算指标的变化。
问题分析
在Kubernetes 1.22.x升级到1.25.x以及KEDA从2.2.x升级到2.10.x后,我们观察到:
- 外部指标API的延迟显著增加,P99延迟达到约5秒
- 自动扩展管道出现明显延迟,响应时间超过10分钟
- 系统在高负载下(300+ ScaledObject)表现不佳
通过深入分析,我们发现问题的根源在于KEDA最新版本中的指标抓取模型发生了变化:
- 指标现在通过gRPC客户端从KEDA Operator获取,而非直接从Metrics Adapter获取
- 在指标读取路径中,系统会调用Kubernetes API服务器来更新ScaledObject的回退健康状态
- 这些API调用在客户端被限流,导致外部指标API读取延迟增加
根本原因
- 设计变更:KEDA的指标抓取组件已与Operator合并,共享相同的Kubernetes客户端
- 默认限流设置不足:默认的客户端QPS(20)和突发(30)设置对于大规模集群来说太低
- 冗余API调用:即使没有配置回退行为的ScaledObject,系统也会更新其健康状态
解决方案
配置优化
对于大规模KEDA部署,建议调整以下配置参数:
- 增加Kubernetes客户端的QPS和突发限制
- 根据集群规模适当调整这些值,例如:
- QPS: 50-100
- 突发: 100-150
代码优化
KEDA社区正在考虑以下代码层面的改进:
- 仅对配置了回退行为的ScaledObject更新健康状态
- 在更新状态前检查状态是否实际发生变化,避免冗余API调用
- 考虑将瞬态错误计数信息保存在内存中,而非持久化到ScaledObject状态
最佳实践
对于大规模KEDA部署,建议:
- 监控指标:密切监控外部指标API的延迟和错误率
- 性能测试:在生产部署前进行负载测试,模拟预期的工作负载
- 渐进式部署:逐步增加ScaledObject数量,观察系统行为
- 资源分配:确保KEDA Operator有足够的CPU和内存资源
未来展望
KEDA社区正在持续优化大规模部署场景下的性能表现。随着Kubernetes生态系统的演进,我们期待看到:
- 更精细化的限流控制
- 指标抓取路径的进一步优化
- 更好的大规模集群支持文档
通过合理的配置和持续的优化,KEDA完全能够支持大规模生产环境中的自动扩展需求。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8