KEDA在大规模集群中的性能优化与配置指南
2025-05-26 19:31:13作者:邓越浪Henry
背景介绍
KEDA(Kubernetes Event-driven Autoscaling)是一个流行的Kubernetes自动扩展控制器,它通过将事件源与工作负载解耦来实现精细化的自动扩展。然而,在Flipkart这样的大型生产环境中,当集群中部署了300多个ScaledObject时,我们遇到了HPA(Horizontal Pod Autoscaler)功能显著退化的问题,扩展事件无法及时响应计算指标的变化。
问题分析
在Kubernetes 1.22.x升级到1.25.x以及KEDA从2.2.x升级到2.10.x后,我们观察到:
- 外部指标API的延迟显著增加,P99延迟达到约5秒
- 自动扩展管道出现明显延迟,响应时间超过10分钟
- 系统在高负载下(300+ ScaledObject)表现不佳
通过深入分析,我们发现问题的根源在于KEDA最新版本中的指标抓取模型发生了变化:
- 指标现在通过gRPC客户端从KEDA Operator获取,而非直接从Metrics Adapter获取
- 在指标读取路径中,系统会调用Kubernetes API服务器来更新ScaledObject的回退健康状态
- 这些API调用在客户端被限流,导致外部指标API读取延迟增加
根本原因
- 设计变更:KEDA的指标抓取组件已与Operator合并,共享相同的Kubernetes客户端
- 默认限流设置不足:默认的客户端QPS(20)和突发(30)设置对于大规模集群来说太低
- 冗余API调用:即使没有配置回退行为的ScaledObject,系统也会更新其健康状态
解决方案
配置优化
对于大规模KEDA部署,建议调整以下配置参数:
- 增加Kubernetes客户端的QPS和突发限制
- 根据集群规模适当调整这些值,例如:
- QPS: 50-100
- 突发: 100-150
代码优化
KEDA社区正在考虑以下代码层面的改进:
- 仅对配置了回退行为的ScaledObject更新健康状态
- 在更新状态前检查状态是否实际发生变化,避免冗余API调用
- 考虑将瞬态错误计数信息保存在内存中,而非持久化到ScaledObject状态
最佳实践
对于大规模KEDA部署,建议:
- 监控指标:密切监控外部指标API的延迟和错误率
- 性能测试:在生产部署前进行负载测试,模拟预期的工作负载
- 渐进式部署:逐步增加ScaledObject数量,观察系统行为
- 资源分配:确保KEDA Operator有足够的CPU和内存资源
未来展望
KEDA社区正在持续优化大规模部署场景下的性能表现。随着Kubernetes生态系统的演进,我们期待看到:
- 更精细化的限流控制
- 指标抓取路径的进一步优化
- 更好的大规模集群支持文档
通过合理的配置和持续的优化,KEDA完全能够支持大规模生产环境中的自动扩展需求。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133