Visual Studio Test Platform(vstest)项目教程
1. 项目目录结构及介绍
微软的Visual Studio Test Platform项目位于GitHub,它为核心测试运行提供引擎和服务,支持多种测试框架如MSTest, xUnit, NUnit等。以下是一般化的项目目录结构概述,请注意实际版本可能有所差异:
-
src
: 这个目录包含了主要的源代码组件。Engine
: 包含测试执行引擎的核心逻辑。Adapter
: 存放各种测试适配器,使不同的测试框架能够被VSTest识别和执行。Common
: 共享的库和工具类。
-
test
: 单元测试和集成测试的存放位置,用来确保vstest自身功能的正确性。 -
build
: 构建脚本和配置文件,用于自动化构建过程。 -
docs
: 文档资料,虽然详细的API文档可能在另外的官方文档页面上。 -
.gitignore
,LICENSE
,README.md
: 标准的Git仓库文件,许可证信息以及快速入门说明。 -
packages
: 如果项目中有nuget包管理,这个目录将存放下载的依赖包。
2. 项目的启动文件介绍
在VSTest项目中,没有单一的"启动文件"供开发者直接执行来启动整个平台。但是,对于开发和测试环境,关键的入口点是通过命令行工具VSTest.Console.exe
来调用的,这通常不在项目源码目录本身,而是安装在Visual Studio的特定路径下。开发者或持续集成流程可以通过指定测试集、配置和其他参数来启动测试执行。
然而,若要编译并进行本地开发调试,可能会涉及到解决方案文件.sln
,比如vstest.sln
,它允许通过Visual Studio或MSBuild命令来加载和构建整个项目集合。
3. 项目的配置文件介绍
a. .runsettings
文件
-
用途: 此类型的配置文件允许用户自定义VSTest行为,如数据收集器的选择,测试适配器路径,以及控制测试执行的一些高级设置。
-
例子: 用户可以创建一个
.runsettings
文件,在其中设定测试过滤条件,或者指定代码覆盖率工具的使用。
b. .testsettings
文件(在兼容模式下)
-
用途: 在需要向后兼容旧版
mstest.exe
的行为时使用,尤其是在处理一些特定测试设置时。 -
特点: 它可以控制测试运行的各个方面,包括但不仅限于测试运行器的特性、数据访问方法和日志记录选项。
在使用这些配置文件时,用户可以在命令行通过/Settings:
参数指向具体的配置文件,从而按需调整测试执行环境的配置。
以上是对Visual Studio Test Platform项目的一个基本概览,具体实现细节和配置的深入学习,建议参考微软的官方文档和项目内的详细注释。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









