《汽车损坏检测开源项目安装与配置指南》
2025-04-18 04:27:28作者:柏廷章Berta
1. 项目基础介绍
本项目是一个开源的汽车损坏检测系统,它能够识别汽车上的凹痕、划痕等损伤。该系统基于深度学习技术,使用Mask R-CNN算法进行对象检测和实例分割,以Keras和TensorFlow为后端框架进行实现。
主要的编程语言为Python,同时也使用了Jupyter Notebook进行代码演示和文档编写。
2. 项目使用的关键技术和框架
- Mask R-CNN: 一种用于实例分割的深度学习框架,它扩展了Faster R-CNN,添加了分支以生成对象掩码。
- Keras: 一个高级神经网络API,运行在TensorFlow之上,易于使用且模块化。
- TensorFlow: 一个由Google开发的开源机器学习框架,用于高性能数值计算。
3. 项目安装和配置的准备工作与详细步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖:
- Python(建议使用Python 3.7)
- pip(Python的包管理工具)
- TensorFlow
- Keras
安装步骤
克隆项目仓库
首先,您需要在本地克隆项目仓库。打开命令行界面,执行以下命令:
git clone https://github.com/nicolasmetallo/car-damage-detector.git
安装项目依赖
进入项目目录,安装项目所需的所有依赖项。执行以下命令:
pip install -r requirements.txt
准备数据集
您需要准备用于训练模型的数据集,数据集应该包含损坏和未损坏汽车的图片。图片需要被标注,可以使用VIA工具进行标注,并保存为JSON格式。
构建数据集
使用项目提供的build_dataset.py脚本来构建数据集,这个脚本会按照指定的比例将数据分为训练集、验证集和测试集。执行以下命令:
python3 build_dataset.py --data_dir='images' --output_dir='dataset'
训练模型
项目提供了custom.py脚本来训练模型。以下是一个训练模型的示例命令:
python3 custom.py --dataset='dataset' --weights=coco
这条命令会从COCO权重开始训练模型。如果系统没有COCO权重,它会自动下载。
按照以上步骤,您就可以成功安装并配置该项目,开始进行汽车损坏检测的训练和测试了。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110