RisingWave分布式DML执行优化解析
2025-05-29 17:29:18作者:冯爽妲Honey
背景概述
RisingWave作为一款分布式流处理数据库,其DML(数据操作语言)执行性能直接影响着系统的整体吞吐量。在早期版本中,RisingWave采用了一种随机选择计算节点的方式来分发DML操作负载,这种方式能够有效平衡各计算节点的写入压力。然而,在后续的优化过程中,这种随机分发机制被移除,导致所有DML操作都被集中到单个计算节点上执行。
问题分析
当DML操作被集中到单个计算节点时,会带来两个主要问题:
- 性能瓶颈:该计算节点会成为整个集群的瓶颈,特别是在处理大规模数据写入时
- 资源利用不均衡:其他计算节点的计算能力无法被充分利用
虽然通过dml_rate_limit参数可以限制写入速率以避免节点过载,但这会以牺牲DML执行速度为代价,在某些对写入速度有要求的场景下并不理想。
解决方案
RisingWave提供了batch_enable_distributed_dml配置选项来解决这一问题。该选项启用后,系统会将DML操作分片并分发到所有计算节点上并行执行,而不是集中在单个节点。
技术实现细节
- 分布式执行机制:启用该选项后,DML操作会被拆分为多个chunk,并分发到所有计算节点的DMLExecutor上并行处理
- 数据重分布:在DMLExecutor处理完成后,数据会根据表的分发策略(如Hash分发)进行重新分布
- 执行计划变化:通过对比执行计划可以看到,启用分布式DML后,系统会添加额外的Exchange节点来实现数据的分发和重分布
性能考量
值得注意的是,虽然分布式DML理论上可以提高并行度,但在实际测试中性能提升可能并不显著。这是因为:
- 后续的数据重分布操作:数据在DMLExecutor处理后还需要根据表的分发策略进行重分布,这会带来额外的开销
- 网络传输成本:跨节点的数据传输会增加网络带宽消耗
适用场景
分布式DML特别适合以下场景:
- 大规模数据写入:当需要处理大量数据写入时,分布式执行可以避免单节点成为瓶颈
- DELETE操作:即使是基于主键的DELETE操作,分布式DML仍然有效,因为数据会在DMLExecutor处理后根据分发策略正确重分布
总结
RisingWave通过batch_enable_distributed_dml配置选项提供了灵活的DML执行策略选择。用户可以根据实际业务场景和性能需求,权衡单节点执行和分布式执行的利弊,选择最适合的配置方式。对于需要处理大规模DML操作的场景,启用分布式DML可以有效提高系统吞吐量和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704