GLM-4多卡LoRA微调中的显存溢出问题分析与解决方案
2025-06-03 21:37:41作者:侯霆垣
问题背景
在使用GLM-4进行LoRA微调时,许多开发者遇到了CUDA显存不足的问题,特别是在使用多张NVIDIA 4090显卡时。典型错误表现为"OutOfMemoryError: CUDA out of memory",即使显存看似充足,系统仍报告无法分配少量内存。
问题本质分析
这个问题的核心在于PyTorch默认的数据并行策略。当使用多张显卡时,如果没有正确配置分布式训练策略,系统会采用数据并行方式,导致每张显卡都加载完整的模型副本。对于GLM-4这样的大型模型,即使使用LoRA技术降低了可训练参数数量,基础模型仍然会占用大量显存。
解决方案
1. 使用DeepSpeed配置
正确的解决方案是引入DeepSpeed的Zero优化策略,特别是Zero-3阶段。这可以实现参数的分片存储和优化器状态的分区,显著降低每张显卡的显存占用。
在GLM-4的配置文件中,应添加或修改以下内容:
deepspeed: ds_zero_3.json
2. 配置DeepSpeed Zero-3
Zero-3配置文件的典型内容应包括:
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"fp16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"sub_group_size": 1e9,
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}
3. 其他优化建议
- 梯度累积:适当增加梯度累积步数,可以减少显存峰值使用
- 混合精度训练:启用FP16或BF16混合精度训练
- 激活检查点:使用梯度检查点技术,以计算时间换取显存空间
- 序列长度优化:根据实际需求调整最大序列长度
常见误区
- 认为LoRA微调就一定显存占用低:LoRA虽然减少了可训练参数,但基础模型仍然需要加载到显存中
- 忽视数据并行与模型并行的区别:简单的数据并行无法解决大模型显存问题
- 配置不当:DeepSpeed配置不正确可能导致优化效果不佳
实践建议
对于GLM-4这样的百亿参数模型,即使使用LoRA微调,在多卡环境下也应:
- 始终使用DeepSpeed Zero-3配置
- 监控显存使用情况,确保每张卡的负载均衡
- 根据硬件条件调整微批次大小和梯度累积步数
- 在训练前进行小规模测试,验证配置有效性
通过正确配置分布式训练策略,可以充分利用多卡资源,有效解决GLM-4等大模型微调时的显存瓶颈问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178