GLM-4多卡LoRA微调中的显存溢出问题分析与解决方案
2025-06-03 19:53:55作者:侯霆垣
问题背景
在使用GLM-4进行LoRA微调时,许多开发者遇到了CUDA显存不足的问题,特别是在使用多张NVIDIA 4090显卡时。典型错误表现为"OutOfMemoryError: CUDA out of memory",即使显存看似充足,系统仍报告无法分配少量内存。
问题本质分析
这个问题的核心在于PyTorch默认的数据并行策略。当使用多张显卡时,如果没有正确配置分布式训练策略,系统会采用数据并行方式,导致每张显卡都加载完整的模型副本。对于GLM-4这样的大型模型,即使使用LoRA技术降低了可训练参数数量,基础模型仍然会占用大量显存。
解决方案
1. 使用DeepSpeed配置
正确的解决方案是引入DeepSpeed的Zero优化策略,特别是Zero-3阶段。这可以实现参数的分片存储和优化器状态的分区,显著降低每张显卡的显存占用。
在GLM-4的配置文件中,应添加或修改以下内容:
deepspeed: ds_zero_3.json
2. 配置DeepSpeed Zero-3
Zero-3配置文件的典型内容应包括:
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"fp16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"sub_group_size": 1e9,
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}
3. 其他优化建议
- 梯度累积:适当增加梯度累积步数,可以减少显存峰值使用
- 混合精度训练:启用FP16或BF16混合精度训练
- 激活检查点:使用梯度检查点技术,以计算时间换取显存空间
- 序列长度优化:根据实际需求调整最大序列长度
常见误区
- 认为LoRA微调就一定显存占用低:LoRA虽然减少了可训练参数,但基础模型仍然需要加载到显存中
- 忽视数据并行与模型并行的区别:简单的数据并行无法解决大模型显存问题
- 配置不当:DeepSpeed配置不正确可能导致优化效果不佳
实践建议
对于GLM-4这样的百亿参数模型,即使使用LoRA微调,在多卡环境下也应:
- 始终使用DeepSpeed Zero-3配置
- 监控显存使用情况,确保每张卡的负载均衡
- 根据硬件条件调整微批次大小和梯度累积步数
- 在训练前进行小规模测试,验证配置有效性
通过正确配置分布式训练策略,可以充分利用多卡资源,有效解决GLM-4等大模型微调时的显存瓶颈问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869