Apache Fury性能优化:提升Fury实例创建速度
Apache Fury作为一个高性能的Java序列化框架,其核心优势在于极致的性能表现。然而在实际使用中发现,Fury实例的创建过程存在性能瓶颈,每次创建耗时约2毫秒,这对于需要频繁创建Fury实例的场景来说是不可忽视的开销。本文将深入分析这一性能问题及其优化方案。
性能瓶颈分析
通过性能剖析工具可以发现,Fury实例创建过程中的主要耗时集中在ClassResolver组件。具体表现为:
-
字符串格式化开销:在类注册过程中大量使用String.format方法生成错误信息,这在性能敏感路径上造成了不必要的开销。
-
哈希表扩容成本:内部使用的HashMap在初始化时未预设合理大小,导致频繁扩容操作。
-
日志记录成本:构造函数中的INFO级别日志记录,特别是获取行号的操作消耗了大量时间。
优化方案
针对上述问题,我们提出以下优化策略:
-
避免字符串生成:在性能关键路径上,使用Preconditions的模板功能替代直接字符串拼接,减少临时字符串对象的创建。
-
优化哈希表初始化:根据典型使用场景预估所需容量,直接创建足够大的HashMap,避免动态扩容带来的性能损耗。
-
日志级别调整:将构造函数中的INFO日志调整为DEBUG级别,减少生产环境中的日志开销。同时研究日志框架内部实现,寻找可能的线程安全缓存机制来优化行号获取性能。
-
条件判断优化:在类注册校验逻辑中,优先使用简单的if判断而非Preconditions.checkArgument,减少不必要的哈希表查找操作。
实现建议
在实际编码实现时,建议采用以下最佳实践:
-
对于类注册时的名称冲突检查,可以先进行简单的if判断,确认存在冲突后再构造详细的错误信息。
-
根据项目典型使用场景统计,预设ClassResolver内部Map的初始容量,一般可设置为128或256,以平衡内存使用和性能。
-
对于日志系统,考虑实现一个轻量级的日志门面,在性能敏感路径上提供更高效的日志记录能力。
性能预期
经过上述优化后,预期Fury实例的创建时间可以从2毫秒降低到亚毫秒级别,提升幅度可达50%以上。这将显著改善需要频繁创建Fury实例的应用场景性能表现。
使用建议
虽然我们优化了Fury的创建性能,但仍建议用户遵循最佳实践:
-
尽可能复用Fury实例,避免频繁创建销毁。
-
对于多线程环境,考虑使用ThreadLocal缓存Fury实例。
-
在性能关键路径上,禁用不必要的日志输出。
通过这些优化措施,Apache Fury将能够为Java高性能序列化场景提供更加卓越的性能表现。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00