Apache Fury性能优化:提升Fury实例创建速度
Apache Fury作为一个高性能的Java序列化框架,其核心优势在于极致的性能表现。然而在实际使用中发现,Fury实例的创建过程存在性能瓶颈,每次创建耗时约2毫秒,这对于需要频繁创建Fury实例的场景来说是不可忽视的开销。本文将深入分析这一性能问题及其优化方案。
性能瓶颈分析
通过性能剖析工具可以发现,Fury实例创建过程中的主要耗时集中在ClassResolver组件。具体表现为:
-
字符串格式化开销:在类注册过程中大量使用String.format方法生成错误信息,这在性能敏感路径上造成了不必要的开销。
-
哈希表扩容成本:内部使用的HashMap在初始化时未预设合理大小,导致频繁扩容操作。
-
日志记录成本:构造函数中的INFO级别日志记录,特别是获取行号的操作消耗了大量时间。
优化方案
针对上述问题,我们提出以下优化策略:
-
避免字符串生成:在性能关键路径上,使用Preconditions的模板功能替代直接字符串拼接,减少临时字符串对象的创建。
-
优化哈希表初始化:根据典型使用场景预估所需容量,直接创建足够大的HashMap,避免动态扩容带来的性能损耗。
-
日志级别调整:将构造函数中的INFO日志调整为DEBUG级别,减少生产环境中的日志开销。同时研究日志框架内部实现,寻找可能的线程安全缓存机制来优化行号获取性能。
-
条件判断优化:在类注册校验逻辑中,优先使用简单的if判断而非Preconditions.checkArgument,减少不必要的哈希表查找操作。
实现建议
在实际编码实现时,建议采用以下最佳实践:
-
对于类注册时的名称冲突检查,可以先进行简单的if判断,确认存在冲突后再构造详细的错误信息。
-
根据项目典型使用场景统计,预设ClassResolver内部Map的初始容量,一般可设置为128或256,以平衡内存使用和性能。
-
对于日志系统,考虑实现一个轻量级的日志门面,在性能敏感路径上提供更高效的日志记录能力。
性能预期
经过上述优化后,预期Fury实例的创建时间可以从2毫秒降低到亚毫秒级别,提升幅度可达50%以上。这将显著改善需要频繁创建Fury实例的应用场景性能表现。
使用建议
虽然我们优化了Fury的创建性能,但仍建议用户遵循最佳实践:
-
尽可能复用Fury实例,避免频繁创建销毁。
-
对于多线程环境,考虑使用ThreadLocal缓存Fury实例。
-
在性能关键路径上,禁用不必要的日志输出。
通过这些优化措施,Apache Fury将能够为Java高性能序列化场景提供更加卓越的性能表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00