AWS Deep Learning Containers发布PyTorch 2.5.1 ARM64 CPU推理镜像
2025-07-07 15:36:45作者:龚格成
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的Docker镜像,专为机器学习和深度学习工作负载设计。这些容器预装了流行的深度学习框架、库和工具,使开发者能够快速部署和运行AI应用,而无需处理复杂的依赖管理和环境配置。
近日,AWS DLC项目发布了针对ARM64架构的PyTorch 2.5.1 CPU推理镜像,版本号为v1.10-pt-arm64-sagemaker-2.5.1-inf-cpu-py311。这个镜像基于Ubuntu 22.04操作系统构建,支持Python 3.11环境,特别适合在Amazon SageMaker服务上运行PyTorch模型的推理任务。
镜像技术细节
该Docker镜像包含了PyTorch 2.5.1及其相关生态组件,全部针对ARM64架构进行了优化。主要的技术亮点包括:
-
核心框架:预装了PyTorch 2.5.1的CPU版本,这是一个稳定且性能优化的版本,适合生产环境部署。
-
配套工具:
- TorchServe 0.12.0:用于高效部署PyTorch模型的服务框架
- TorchModelArchiver 0.12.0:用于打包PyTorch模型以便部署
- TorchVision 0.20.1:提供计算机视觉相关的数据集、模型和转换
- TorchAudio 2.5.1:音频处理相关的PyTorch扩展
-
科学计算库:
- NumPy 2.1.3:基础数值计算库
- SciPy 1.14.1:科学计算工具集
- Pandas 2.2.3:数据处理和分析库
- scikit-learn 1.5.2:机器学习算法库
-
图像处理:
- OpenCV 4.10.0.84:计算机视觉库
- Pillow 11.0.0:图像处理库
-
系统工具:
- AWS CLI 1.36.7:AWS命令行工具
- Boto3 1.35.66:AWS Python SDK
- Cython 3.0.11:Python的C扩展工具
架构优势
这个镜像专门针对ARM64架构优化,相比传统的x86架构,ARM处理器在能效比方面具有显著优势,特别适合云端的推理工作负载。使用ARM架构可以:
- 降低计算成本,提高资源利用率
- 减少能源消耗,更环保
- 在某些工作负载上提供更好的性能表现
使用场景
这个PyTorch ARM64 CPU推理镜像特别适合以下场景:
- 模型服务化:将训练好的PyTorch模型部署为可扩展的推理服务
- 批量推理:处理大批量的预测请求
- 边缘计算:在资源受限的环境中运行模型推理
- 成本敏感型应用:需要优化计算成本的AI应用
版本兼容性
该镜像基于Python 3.11构建,与PyTorch 2.5.x系列完全兼容。开发者可以放心使用最新的Python特性,同时享受PyTorch框架的稳定性和性能。
AWS Deep Learning Containers项目持续为机器学习从业者提供高质量的预构建环境,这个PyTorch ARM64 CPU推理镜像的发布,进一步丰富了AWS在异构计算领域的解决方案,为用户提供了更多选择和灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C027
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869