PyTorch Serve自定义指标监控功能详解
2025-06-14 03:42:55作者:董斯意
概述
PyTorch Serve作为PyTorch官方提供的模型服务框架,提供了强大的自定义指标监控功能。本文将详细介绍如何在PyTorch Serve中实现自定义指标的创建和上报。
指标监控的重要性
在生产环境中部署机器学习模型时,监控模型性能和服务质量至关重要。PyTorch Serve内置的指标系统可以帮助开发者:
- 实时跟踪模型推理性能
- 监控服务健康状况
- 收集业务相关指标
- 为自动扩缩容提供数据支持
自定义指标实现
PyTorch Serve提供了灵活的API来创建和上报自定义指标。核心实现步骤如下:
1. 导入必要模块
首先需要从ts.service模块导入emit_metrics函数:
from ts.service import emit_metrics
2. 初始化指标
在自定义Handler的initialize方法中初始化指标存储:
def initialize(self, ctx):
# 添加计数器指标
ctx.metrics.add_counter(
name="custom_counter",
unit="count",
dimensions=["model_name"]
)
3. 更新指标值
在处理请求时更新指标值:
def handle(self, data, context):
# 业务逻辑处理...
# 更新计数器
context.metrics.add_counter("custom_counter", 1, ["resnet18"])
4. 上报指标
最后需要显式调用emit_metrics函数上报指标:
# 上报所有收集的指标
emit_metrics(context.metrics.store)
完整示例
以下是一个完整的自定义Handler示例,实现了请求计数功能:
from ts.service import emit_metrics
from ts.torch_handler.base_handler import BaseHandler
class CustomMetricsHandler(BaseHandler):
def initialize(self, ctx):
super().initialize(ctx)
# 初始化请求计数器
ctx.metrics.add_counter(
name="request_count",
unit="count",
dimensions=["model_name", "status"]
)
def handle(self, data, context):
try:
# 业务处理逻辑
result = self.inference(data)
# 记录成功请求
context.metrics.add_counter(
"request_count",
1,
["resnet18", "success"]
)
# 上报指标
emit_metrics(context.metrics.store)
return result
except Exception as e:
# 记录失败请求
context.metrics.add_counter(
"request_count",
1,
["resnet18", "failed"]
)
emit_metrics(context.metrics.store)
raise e
指标类型支持
PyTorch Serve支持多种指标类型:
- 计数器(Counter): 用于记录累计值,如请求次数
- 计量器(Gauge): 用于记录瞬时值,如内存使用量
- 直方图(Histogram): 用于记录数据分布,如请求延迟
最佳实践
- 为指标设置合理的维度(Dimensions),便于后续分析
- 避免在每次请求时都上报指标,可以考虑批量上报
- 为指标设置清晰的命名和单位
- 监控关键业务指标和系统健康指标
通过合理使用PyTorch Serve的指标监控功能,开发者可以更好地掌握模型服务的运行状态,及时发现并解决问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249