Supersonic项目中基于大模型的多数据集意图识别优化实践
2025-06-20 12:39:51作者:蔡怀权
在对话式数据分析系统中,用户自然语言查询的意图识别是核心挑战之一。当系统检测到多个相似数据集可能匹配用户查询时,传统规则引擎往往难以准确判断用户真实意图。腾讯音乐开源的Supersonic项目近期针对这一痛点进行了创新性改进,引入大模型技术优化多数据集选择逻辑,显著提升了意图识别的准确率。
背景与挑战
在Supersonic这类智能数据分析平台中,用户通过自然语言提出查询需求(如"查看上周销售额")时,系统需要完成两个关键步骤:
- 识别查询涉及的业务实体(如"销售额"指标)
- 定位包含该实体的具体数据集
当不同数据集包含同名指标时(如"销售额"可能同时存在于"电商销售表"和"线下零售表"),传统方案通常采用规则匹配:
- 基于数据集最近使用时间
- 根据数据集元数据匹配度
- 人工预设优先级
这些方法存在明显局限:无法理解查询的上下文语义,导致在复杂场景下准确率骤降。
技术方案演进
Supersonic项目提出了两种基于大模型的改进方案:
方案一:基于历史SQL的语义推理
系统会分析用户近期执行的SQL查询序列,提取其中的语义模式。当出现多数据集冲突时,将以下信息输入大模型:
- 当前查询的语义解析结果
- 候选数据集的结构元数据
- 用户历史查询的语义特征
大模型通过理解业务上下文(如用户近期一直在查询电商数据),可以更准确地推荐最相关数据集。
方案二:实时数据感知决策
在数据集选择阶段,系统会:
- 从候选数据集中采样典型数据
- 结合用户查询生成对比分析提示词
- 由大模型判断哪个数据集的数据分布更符合查询意图
该方案虽然更精准,但会带来额外的数据访问开销。
实现效果与启示
目前Supersonic优先实现了方案一,在实际业务场景中观察到:
- 多数据集冲突场景的准确率提升40%+
- 用户显式修正数据集的次数减少60%
- 系统响应时间增加约200ms(主要来自大模型推理)
技术方案选择建议:
- 对延迟敏感的场景可采用方案一
- 对准确率要求极高的场景可尝试方案二
- 可设计混合策略,根据冲突严重程度动态选择方案
未来方向
该实践为对话式BI系统提供了新思路:
- 上下文感知的意图识别架构
- 大模型与传统规则引擎的协同工作流
- 持续学习机制(根据用户反馈优化模型表现)
这种技术路径不仅适用于数据集选择场景,也可扩展至查询条件推导、可视化方案推荐等衍生场景,值得自然语言处理和数据系统领域的开发者持续关注。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136