Supersonic项目中基于大模型的多数据集意图识别优化实践
2025-06-20 12:27:13作者:蔡怀权
在对话式数据分析系统中,用户自然语言查询的意图识别是核心挑战之一。当系统检测到多个相似数据集可能匹配用户查询时,传统规则引擎往往难以准确判断用户真实意图。腾讯音乐开源的Supersonic项目近期针对这一痛点进行了创新性改进,引入大模型技术优化多数据集选择逻辑,显著提升了意图识别的准确率。
背景与挑战
在Supersonic这类智能数据分析平台中,用户通过自然语言提出查询需求(如"查看上周销售额")时,系统需要完成两个关键步骤:
- 识别查询涉及的业务实体(如"销售额"指标)
- 定位包含该实体的具体数据集
当不同数据集包含同名指标时(如"销售额"可能同时存在于"电商销售表"和"线下零售表"),传统方案通常采用规则匹配:
- 基于数据集最近使用时间
- 根据数据集元数据匹配度
- 人工预设优先级
这些方法存在明显局限:无法理解查询的上下文语义,导致在复杂场景下准确率骤降。
技术方案演进
Supersonic项目提出了两种基于大模型的改进方案:
方案一:基于历史SQL的语义推理
系统会分析用户近期执行的SQL查询序列,提取其中的语义模式。当出现多数据集冲突时,将以下信息输入大模型:
- 当前查询的语义解析结果
- 候选数据集的结构元数据
- 用户历史查询的语义特征
大模型通过理解业务上下文(如用户近期一直在查询电商数据),可以更准确地推荐最相关数据集。
方案二:实时数据感知决策
在数据集选择阶段,系统会:
- 从候选数据集中采样典型数据
- 结合用户查询生成对比分析提示词
- 由大模型判断哪个数据集的数据分布更符合查询意图
该方案虽然更精准,但会带来额外的数据访问开销。
实现效果与启示
目前Supersonic优先实现了方案一,在实际业务场景中观察到:
- 多数据集冲突场景的准确率提升40%+
- 用户显式修正数据集的次数减少60%
- 系统响应时间增加约200ms(主要来自大模型推理)
技术方案选择建议:
- 对延迟敏感的场景可采用方案一
- 对准确率要求极高的场景可尝试方案二
- 可设计混合策略,根据冲突严重程度动态选择方案
未来方向
该实践为对话式BI系统提供了新思路:
- 上下文感知的意图识别架构
- 大模型与传统规则引擎的协同工作流
- 持续学习机制(根据用户反馈优化模型表现)
这种技术路径不仅适用于数据集选择场景,也可扩展至查询条件推导、可视化方案推荐等衍生场景,值得自然语言处理和数据系统领域的开发者持续关注。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869