Pinax Web Analytics 技术文档
1. 安装指南
1.1 安装步骤
要安装 pinax-webanalytics,可以通过以下命令使用 pip 进行安装:
$ pip install pinax-webanalytics
1.2 配置 Django 项目
安装完成后,需要在 Django 项目的 INSTALLED_APPS 设置中添加 pinax.webanalytics:
INSTALLED_APPS = [
# 其他应用
"pinax.webanalytics",
]
2. 项目的使用说明
2.1 基本使用
在 Django 模板中,首先需要加载 pinax_webanalytics_tags 模板标签:
{% load pinax_webanalytics_tags %}
然后,在页面的底部(通常在 </body> 标签之前)插入以下代码以启用分析功能:
{% analytics %}
2.2 自定义活动跟踪
如果你需要跟踪特定的用户活动,可以使用 pinax-webanalytics 提供的 activity API。例如:
from pinax.webanalytics import activity
activity.add(request, "mixpanel", "track", "Node Viewed", {
"node": self.get_object().title,
"user": request.user.username
})
这段代码通常放在视图中,用于跟踪用户在页面上的特定行为。
2.3 AdWords 转化跟踪
要启用 AdWords 转化跟踪,首先加载模板标签:
{% load pinax_webanalytics_tags %}
然后在页面底部插入以下代码:
{% adwords_conversion "waitinglist" %}
其中,"waitinglist" 是 PINAX_WEBANALYTICS_ADWORDS_SETTINGS 中定义的转化标识符。
3. 项目 API 使用文档
3.1 activity.add 方法
activity.add 方法用于记录用户活动。其参数如下:
request: Django 的请求对象。kind: 分析服务的类型(如"mixpanel")。method: 分析服务的 JavaScript API 方法(如"track")。args: 传递给 JavaScript API 的参数。
3.2 模板标签
{% analytics %}: 用于在页面中插入分析代码。{% adwords_conversion "key" %}: 用于插入 AdWords 转化跟踪代码,其中"key"是PINAX_WEBANALYTICS_ADWORDS_SETTINGS中定义的键。
4. 项目安装方式
4.1 通过 pip 安装
如前所述,可以通过 pip 直接安装 pinax-webanalytics:
$ pip install pinax-webanalytics
4.2 配置 Django 项目
安装完成后,确保在 INSTALLED_APPS 中添加 pinax.webanalytics,并根据需要配置 PINAX_WEBANALYTICS_SETTINGS 和 PINAX_WEBANALYTICS_ADWORDS_SETTINGS。
4.3 自定义模板
pinax-webanalytics 提供了默认的分析服务模板,但你可以通过在项目的 templates/pinax-webanalytics 目录下创建自定义模板来覆盖默认行为。模板的命名格式为 "_%s.html" % slug,其中 slug 是 PINAX_WEBANALYTICS_SETTINGS 中定义的键。
总结
pinax-webanalytics 是一个强大的 Django 应用,能够轻松集成多种分析服务。通过简单的安装和配置,你可以快速为你的网站添加分析功能,并跟踪用户行为。希望本文档能帮助你更好地理解和使用 pinax-webanalytics。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00