Pinax Web Analytics 技术文档
1. 安装指南
1.1 安装步骤
要安装 pinax-webanalytics,可以通过以下命令使用 pip 进行安装:
$ pip install pinax-webanalytics
1.2 配置 Django 项目
安装完成后,需要在 Django 项目的 INSTALLED_APPS 设置中添加 pinax.webanalytics:
INSTALLED_APPS = [
# 其他应用
"pinax.webanalytics",
]
2. 项目的使用说明
2.1 基本使用
在 Django 模板中,首先需要加载 pinax_webanalytics_tags 模板标签:
{% load pinax_webanalytics_tags %}
然后,在页面的底部(通常在 </body> 标签之前)插入以下代码以启用分析功能:
{% analytics %}
2.2 自定义活动跟踪
如果你需要跟踪特定的用户活动,可以使用 pinax-webanalytics 提供的 activity API。例如:
from pinax.webanalytics import activity
activity.add(request, "mixpanel", "track", "Node Viewed", {
"node": self.get_object().title,
"user": request.user.username
})
这段代码通常放在视图中,用于跟踪用户在页面上的特定行为。
2.3 AdWords 转化跟踪
要启用 AdWords 转化跟踪,首先加载模板标签:
{% load pinax_webanalytics_tags %}
然后在页面底部插入以下代码:
{% adwords_conversion "waitinglist" %}
其中,"waitinglist" 是 PINAX_WEBANALYTICS_ADWORDS_SETTINGS 中定义的转化标识符。
3. 项目 API 使用文档
3.1 activity.add 方法
activity.add 方法用于记录用户活动。其参数如下:
request: Django 的请求对象。kind: 分析服务的类型(如"mixpanel")。method: 分析服务的 JavaScript API 方法(如"track")。args: 传递给 JavaScript API 的参数。
3.2 模板标签
{% analytics %}: 用于在页面中插入分析代码。{% adwords_conversion "key" %}: 用于插入 AdWords 转化跟踪代码,其中"key"是PINAX_WEBANALYTICS_ADWORDS_SETTINGS中定义的键。
4. 项目安装方式
4.1 通过 pip 安装
如前所述,可以通过 pip 直接安装 pinax-webanalytics:
$ pip install pinax-webanalytics
4.2 配置 Django 项目
安装完成后,确保在 INSTALLED_APPS 中添加 pinax.webanalytics,并根据需要配置 PINAX_WEBANALYTICS_SETTINGS 和 PINAX_WEBANALYTICS_ADWORDS_SETTINGS。
4.3 自定义模板
pinax-webanalytics 提供了默认的分析服务模板,但你可以通过在项目的 templates/pinax-webanalytics 目录下创建自定义模板来覆盖默认行为。模板的命名格式为 "_%s.html" % slug,其中 slug 是 PINAX_WEBANALYTICS_SETTINGS 中定义的键。
总结
pinax-webanalytics 是一个强大的 Django 应用,能够轻松集成多种分析服务。通过简单的安装和配置,你可以快速为你的网站添加分析功能,并跟踪用户行为。希望本文档能帮助你更好地理解和使用 pinax-webanalytics。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00