Phidata项目中实现工具直接输出的技术方案解析
2025-05-07 22:31:44作者:傅爽业Veleda
在开发基于大型语言模型(LLM)的应用程序时,一个常见需求是希望某些工具函数的输出能够绕过LLM的处理直接返回给用户。本文将深入分析Phidata项目中实现这一功能的技术方案。
问题背景
当开发者使用LLM代理(agent)调用工具函数时,默认情况下工具的输出会经过LLM的处理和格式化。例如,当调用一个加法函数add_two_nums(2,3)
时,开发者可能期望直接得到数字5,但实际上LLM可能会将这个结果包装成自然语言响应。
这种处理在某些场景下是不必要的,特别是当:
- 工具输出已经是最终需要的格式
- 需要确保输出数据的精确性不被LLM修改
- 性能敏感场景下希望减少LLM处理的开销
技术实现方案
Phidata项目通过后置钩子(post-hook)机制实现了这一需求。核心实现要点包括:
-
FunctionCall对象: 封装了工具调用的完整信息,包括函数名、参数和结果
-
stop_after_tool_call属性: 设置为True时,指示系统在工具调用后停止进一步处理
-
后置钩子函数: 开发者可以定义自己的后置处理逻辑,并在此决定是否绕过LLM
典型实现代码如下:
from agno.tools import tool
def post_hook(fc: FunctionCall):
print(f"post-hook: {fc.function.name}")
print(f"Arguments: {fc.arguments}")
print(f"Result: {fc.result}")
fc.function.stop_after_tool_call = True
@tool(post_hook=post_hook)
def add_two_nums(a, b):
return a + b
高级应用场景
结构化输出与工具调用的协调
当同时使用结构化输出(structured_outputs=True
)和工具调用时,需要注意LLM的能力限制。某些较小的LLM模型(如小型的Llama模型)可能无法正确处理这种复杂场景。
Pydantic模型支持
对于希望使用Pydantic模型作为工具输入的情况,目前需要显式定义函数模式(schema)来确保LLM能正确理解参数结构。
最佳实践建议
- 对于简单的工具函数,优先考虑使用后置钩子机制直接返回结果
- 在性能敏感场景下,测量绕过LLM处理带来的性能提升
- 当使用结构化输出时,选择能力足够的LLM模型
- 对于复杂参数类型,确保提供清晰的模式定义
总结
Phidata项目提供的后置钩子机制为开发者提供了灵活控制工具输出处理流程的能力。通过合理使用这一特性,开发者可以在保持LLM强大功能的同时,精确控制关键数据的输出流程,满足各种业务场景的需求。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript043GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02chatgpt-on-wechat
基于大模型搭建的聊天机器人,同时支持 微信公众号、企业微信应用、飞书、钉钉 等接入,可选择GPT3.5/GPT-4o/GPT-o1/ DeepSeek/Claude/文心一言/讯飞星火/通义千问/ Gemini/GLM-4/Claude/Kimi/LinkAI,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。Python017
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp音乐播放器项目中的函数调用问题解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
662
442

React Native鸿蒙化仓库
C++
138
222

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
361
354

openGauss kernel ~ openGauss is an open source relational database management system
C++
97
155

Python - 100天从新手到大师
Python
815
149

🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
46
8

凹语言 | 因为简单,所以自由
Go
16
5

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
110
74

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
112
253