Sentence-Transformers中结合GradCache与GISTEmbedLoss的技术实现
2025-05-13 22:44:23作者:邓越浪Henry
在自然语言处理领域,Sentence-Transformers项目因其高效的句子嵌入能力而广受欢迎。本文将深入探讨如何在该项目中结合GradCache技术与GISTEmbedLoss损失函数,以解决GPU资源受限情况下的模型优化问题。
背景与挑战
在资源受限的环境中训练高质量的嵌入模型面临两个主要挑战:
- 传统Multiple Negatives Ranking Loss(MNR Loss)需要大批量数据才能发挥最佳效果
- GPU内存限制使得无法使用足够大的批处理规模
技术方案
GradCache技术
GradCache(梯度缓存)是一种内存优化技术,它通过以下方式工作:
- 将大批量数据分割为多个小批量
- 分别计算每个小批量的梯度
- 累积并平均这些梯度
- 最后执行一次参数更新
这种方法允许模型在有限内存条件下模拟大批量训练的效果。
GISTEmbedLoss损失函数
GISTEmbedLoss是对MNR Loss的改进,它引入了"引导过滤"机制:
- 使用预训练模型生成指导嵌入
- 根据指导嵌入的相似度过滤掉不相关的负样本
- 只保留信息量最大的负样本进行训练
技术实现
结合这两种技术的实现思路如下:
-
嵌入处理:
- 同时计算主模型和指导模型的嵌入
- 对每个小批量分别处理
-
损失计算:
- 使用指导模型的嵌入识别并过滤低质量负样本
- 将过滤后的样本对用于主模型的损失计算
-
梯度处理:
- 累积多个小批量的梯度
- 执行参数更新
实现细节
具体实现时需要注意:
- 需要维护两套嵌入表示(主模型和指导模型)
- 在损失计算阶段根据指导嵌入的相似度设置掩码
- 将不相关样本的得分设为负无穷以排除其影响
- 梯度缓存机制需要正确处理过滤后的样本
优势与应用
这种结合方案具有以下优势:
- 内存效率高,适合资源受限环境
- 训练质量接近大批量MNR Loss
- 通过引导过滤提高了样本利用效率
典型应用场景包括:
- 低配置GPU环境下的模型微调
- 需要处理大规模数据集的场景
- 对训练效率要求较高的应用
总结
在Sentence-Transformers项目中结合GradCache与GISTEmbedLoss是一种创新的技术方案,它巧妙地解决了资源受限条件下的模型优化问题。这种方案不仅保留了MNR Loss的优势,还通过梯度缓存和引导过滤机制提升了训练效率和模型性能,为在有限计算资源下训练高质量嵌入模型提供了实用解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869