探索多模态手语识别:Skeleton Aware Multi-modal Sign Language Recognition (SAM-SLR)
2024-09-25 08:40:41作者:乔或婵
项目介绍
在计算机视觉领域,手语识别一直是一个具有挑战性的任务。为了解决这一问题,来自东北大学Smile Lab的研究团队开发了一个名为**Skeleton Aware Multi-modal Sign Language Recognition (SAM-SLR)**的开源项目。该项目在CVPR 2021挑战赛中荣获第一名,展示了其在手语识别领域的卓越性能。
SAM-SLR项目通过结合多种模态数据(如骨骼、RGB帧、光流等),实现了对手语的高精度识别。项目代码已在GitHub上公开,供全球研究者和开发者使用和改进。
项目技术分析
SAM-SLR项目采用了多种先进的技术来提升手语识别的准确性:
- 骨骼感知(Skeleton Aware):通过提取手语者的骨骼关键点,捕捉手语的动态特征。
- 多模态融合(Multi-modal Fusion):结合RGB帧、光流、深度HHA等多种模态数据,增强模型的鲁棒性和识别能力。
- 时空卷积网络(Spatial-Temporal Convolution Network):使用SSTCN网络来捕捉骨骼特征的时空信息。
- 模型集成(Model Ensemble):通过集成多个模型的预测结果,进一步提高识别精度。
项目及技术应用场景
SAM-SLR项目及其技术在多个领域具有广泛的应用前景:
- 教育:帮助聋哑学生通过手语与教师和同学进行交流,提升教育质量。
- 医疗:辅助医生与聋哑患者进行沟通,提高医疗服务的效率和质量。
- 公共服务:在公共场合(如机场、火车站)提供手语翻译服务,方便聋哑人士出行。
- 人机交互:开发支持手语输入的智能设备,增强人机交互的多样性。
项目特点
SAM-SLR项目具有以下显著特点:
- 高精度识别:在CVPR 2021挑战赛中获得第一名,证明了其在手语识别领域的领先地位。
- 多模态数据融合:通过结合多种模态数据,提高了模型的鲁棒性和识别能力。
- 易于使用:项目提供了详细的文档和预训练模型,方便用户快速上手和应用。
- 开源社区支持:代码已在GitHub上公开,鼓励全球开发者参与改进和优化。
结语
SAM-SLR项目不仅在技术上取得了突破,还为手语识别的应用开辟了新的可能性。无论你是研究者、开发者还是对人工智能感兴趣的爱好者,SAM-SLR都值得你深入探索和使用。快来加入我们,一起推动手语识别技术的发展吧!
项目地址:GitHub - SAM-SLR
参考文献:
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178