QwenLM/Qwen项目中使用vLLM和FastChat的兼容性问题分析
在QwenLM/Qwen项目中使用vLLM和FastChat进行模型服务部署时,开发者可能会遇到一些兼容性问题。本文将深入分析这些问题的根源,并提供解决方案。
问题背景
当尝试通过FastChat的vLLM worker部署Qwen-7B-Chat-Int4模型时,系统会抛出tokenizer相关的错误。具体表现为worker端报出tokenizer初始化失败的错误,而API服务端则显示无法处理请求的异常。
错误原因分析
经过深入调查,发现这些问题主要源于FastChat和vLLM版本之间的兼容性问题:
-
FastChat 0.2.36版本为了实现与vLLM 0.2.7的兼容性,采用了一种快速但不够完善的实现方式。这种实现方式在处理使用自定义代码的QwenTokenizer时,会引发预期之外的行为。
-
由于QwenTokenizer使用了自定义代码,FastChat的修改特别影响了Qwen模型的正常加载和运行。
解决方案
针对这些问题,可以采取以下解决方案:
-
版本降级:将FastChat降级到0.2.36以下版本(fschat<0.2.36),同时将vLLM降级到0.2.7以下版本(vllm<0.2.7)。这样可以避免FastChat中引入的兼容性问题。
-
API服务错误处理:对于API服务端的错误,可以参考类似问题的处理方式,确保服务能够正确处理请求。
技术细节
在模型部署过程中,tokenizer的正确初始化至关重要。Qwen模型使用自定义的tokenizer实现,这要求框架必须能够正确处理自定义代码。FastChat的新版本修改了tokenizer的加载方式,导致QwenTokenizer无法正确初始化。
最佳实践建议
- 在使用Qwen模型时,建议仔细检查依赖库的版本兼容性
- 部署前进行充分的测试,特别是tokenizer的加载和基本推理功能
- 关注项目更新日志,及时了解版本间的兼容性变化
通过理解这些技术细节和采取适当的解决方案,开发者可以成功地在QwenLM/Qwen项目中使用vLLM和FastChat进行模型服务部署。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00