QwenLM/Qwen项目中使用vLLM和FastChat的兼容性问题分析
在QwenLM/Qwen项目中使用vLLM和FastChat进行模型服务部署时,开发者可能会遇到一些兼容性问题。本文将深入分析这些问题的根源,并提供解决方案。
问题背景
当尝试通过FastChat的vLLM worker部署Qwen-7B-Chat-Int4模型时,系统会抛出tokenizer相关的错误。具体表现为worker端报出tokenizer初始化失败的错误,而API服务端则显示无法处理请求的异常。
错误原因分析
经过深入调查,发现这些问题主要源于FastChat和vLLM版本之间的兼容性问题:
-
FastChat 0.2.36版本为了实现与vLLM 0.2.7的兼容性,采用了一种快速但不够完善的实现方式。这种实现方式在处理使用自定义代码的QwenTokenizer时,会引发预期之外的行为。
-
由于QwenTokenizer使用了自定义代码,FastChat的修改特别影响了Qwen模型的正常加载和运行。
解决方案
针对这些问题,可以采取以下解决方案:
-
版本降级:将FastChat降级到0.2.36以下版本(fschat<0.2.36),同时将vLLM降级到0.2.7以下版本(vllm<0.2.7)。这样可以避免FastChat中引入的兼容性问题。
-
API服务错误处理:对于API服务端的错误,可以参考类似问题的处理方式,确保服务能够正确处理请求。
技术细节
在模型部署过程中,tokenizer的正确初始化至关重要。Qwen模型使用自定义的tokenizer实现,这要求框架必须能够正确处理自定义代码。FastChat的新版本修改了tokenizer的加载方式,导致QwenTokenizer无法正确初始化。
最佳实践建议
- 在使用Qwen模型时,建议仔细检查依赖库的版本兼容性
- 部署前进行充分的测试,特别是tokenizer的加载和基本推理功能
- 关注项目更新日志,及时了解版本间的兼容性变化
通过理解这些技术细节和采取适当的解决方案,开发者可以成功地在QwenLM/Qwen项目中使用vLLM和FastChat进行模型服务部署。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00