stackstac 开源项目实战指南
项目介绍
stackstac 是一个用于高效处理云原生地理空间数据的Python库。它专注于将STAC(SpatialTemporal Asset Catalog)标准定义的数据集合转化为可以便捷操作的xarray DataArray,这些DataArray由Dask支持,允许用户以懒加载的方式处理大型遥感影像数据集。stackstac自动解析STAC元数据,从而简化了空间参数的确定,如坐标参考系统、分辨率和边界框,并且优化了数据并行加载过程,为地球观测和地理信息系统开发提供了强大工具。
项目快速启动
要迅速开始使用stackstac,确保你的环境中已安装必要的依赖项如rasterio、pyproj、dask和xarray。可以通过以下命令快速安装stackstac及可视化所需组件:
pip install 'stackstac[viz]'
紧接着,我们通过一个简单的示例来展示如何使用stackstac堆叠STAC物品成xarray DataArray:
import satsearch
from stackstac import stack
# 搜索STAC物品
items = satsearch.Search(...) # 根据具体需求填充搜索条件
# 堆叠STAC物品,形成xarray DataArray
xr_stack = stack(items)
# 若需自定义参数,例如改变投影和分辨率
custom_xr_stack = stack(items, epsg=3857, resolution=100)
应用案例与最佳实践
stackstac非常适合于创建时间序列分析、复合图像、镶嵌图以及执行基于栅格数据的复杂聚合计算。例如,你可以利用stackstac处理多年卫星图像数据,生成NDVI(归一化植被指数)的周平均值,如下所示:
import xarray as xr
# 确保xr_stack已经包含了所需的Bands(如红波段和近红外波段)
nir = xr_stack["B04"]
red = xr_stack["B03"]
ndvi = (nir - red) / (nir + red)
weekly_ndvi = ndvi.resample(time="1W").mean(dim=("time", "x", "y")).rename("NDVI")
# 使用compute()触发异步计算
weekly_ndvi.compute()
在实际应用中,注意调整Dask的集群配置以适应大规模数据处理,尤其是在执行上述计算时可能需要较大的计算资源。
典型生态项目
stackstac在地球科学领域内广泛应用于环境监测、城市规划、灾害评估等场景。结合Pangeo、Coiled等云原生数据处理平台,stackstac能够支持大规模分布式处理任务,使得科研人员和开发者能够在云端轻松处理PB级的卫星影像数据,实现快速的数据分析与模型构建。通过集成这些生态系统中的其他工具,如GeoPandas、SentinelHub等,stackstac可以进一步扩展其功能,支撑从数据获取到分析报告生成的全流程工作流。
使用stackstac,开发者可以构建高度可扩展的应用,有效地利用现代云计算资源,推动地理空间数据分析进入新的高效时代。无论是科研、政府决策还是商业智能,stackstac都是处理时空数据的强大伙伴。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00