KServe项目中vLLM服务器部署与接口调用问题解析
2025-06-16 17:17:02作者:邓越浪Henry
问题背景
在KServe项目中部署基于vLLM的大型语言模型服务时,用户遇到了两个主要技术问题:YAML格式解析错误和API接口调用404错误。本文将详细分析问题原因并提供解决方案。
YAML格式问题分析
最初用户按照官方文档提供的YAML配置部署InferenceService时,遇到了"did not find expected '-' indicator"错误。这是典型的YAML格式解析问题,主要原因是缩进和列表项标识符使用不当。
正确配置示例
经过调整后的有效配置如下:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
namespace: kserve-test
name: bloom
spec:
predictor:
containers:
- args:
- --port
- "8080"
- --model
- "/mnt/models"
command:
- python3
- -m
- vllm.entrypoints.api_server
env:
- name: STORAGE_URI
value: pvc://task-pv-claim/bloom-560m
image: docker.io/kserve/vllmserver:latest
imagePullPolicy: IfNotPresent
name: kserve-container
resources:
limits:
cpu: "5"
memory: 20Gi
nvidia.com/gpu: "1"
requests:
cpu: "5"
memory: 20Gi
nvidia.com/gpu: "1"
关键修正点:
- 确保所有列表项使用"-"开头并正确缩进
- 保持一致的缩进层级
- 明确指定namespace字段
API接口调用问题
部署成功后,用户尝试调用多个接口均返回404错误。日志显示服务端确实收到了请求但找不到对应端点:
INFO: 172.20.199.156:0 - "POST /v2/models/bloom-560m/generate HTTP/1.1" 404 Not Found
INFO: 172.20.199.156:0 - "GET /v2/models/ HTTP/1.1" 404 Not Found
正确调用方式
最终发现有效的调用端点是/generate,请求体需包含prompt字段:
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" \
http://${INGRESS_HOST}:${INGRESS_PORT}/generate \
-d '{"prompt": "San Francisco is a" }'
成功响应示例:
{"text":["San Francisco is a medium-sized family donating site with nonprofits, churches, Catholic organizations and business"]}
技术深入解析
vLLM服务端点差异
标准vllm.entrypoints.api_server仅提供/generate端点,而不支持兼容接口。如需协议支持,应使用vllm.entrypoints.api_server。
模型存储方案
配置中展示了两种模型存储方式:
- GCS存储:
gcs://kfserving-examples/llm/huggingface/llama - PVC存储:
pvc://task-pv-claim/bloom-560m
PVC存储方案需要预先将模型文件复制到持久卷中,可通过初始化容器实现:
apiVersion: v1
kind: Pod
metadata:
name: setup-model-binary
spec:
volumes:
- name: model-volume
persistentVolumeClaim:
claimName: model-claim
containers:
- name: download-model
image: python:3.11
command: ["sh"]
args: [ "-c", "pip install huggingface_hub && python3 -c 'from huggingface_hub import snapshot_download;snapshot_download(repo_id=\"gpt2\", local_dir=\"/mnt/models/gpt2\")'"]
volumeMounts:
- mountPath: "/mnt/models/"
name: model-volume
最佳实践建议
- YAML验证:部署前使用
yamllint等工具验证YAML格式 - 接口测试:先通过
kubectl port-forward直接测试容器端口,确认基础功能正常 - 日志监控:实时查看Pod日志定位问题
- 资源分配:根据模型大小合理设置CPU/GPU和内存资源
- 协议选择:根据客户端需求选择标准接口或兼容接口
总结
在KServe中部署vLLM服务时,需要注意YAML格式的精确性以及vLLM服务的端点设计特点。通过正确的配置和调用方式,可以充分发挥vLLM的高性能推理能力,为大型语言模型提供高效的服务化部署方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
146
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19