Fortune-Sheet 项目中公式解析器升级引发的构建问题分析
问题背景
在Fortune-Sheet项目最近的开发中,团队对公式解析器(formula-parser)进行了升级。这一变更在合并后导致了项目的构建过程(yarn build)失败。构建系统报出了一个导入错误,尽管实际上被导入的属性确实存在于导出模块中。
问题表现
构建失败的具体表现为:
- 在CI/CD流水线中,构建作业(8967287069)执行失败
- 错误类型为导入错误(import error)
- 表面现象是系统认为某个属性未被导出,但实际上该属性确实存在于导出模块中
问题根源
经过开发团队分析,问题主要源于以下几个方面:
-
构建顺序问题:项目中的各个模块(formula-parser、core、react)之间存在依赖关系,但构建顺序没有明确规划,导致依赖关系混乱。
-
手动修改残留:在公式解析器的grammar-parser.js文件中,存在一些手动插入的代码片段,这些片段在升级过程中可能与新版本产生了冲突。
-
缓存问题:本地开发环境中可能存在旧的构建缓存,导致开发者无法立即看到修复后的效果。
解决方案
团队采取了以下措施解决该问题:
-
明确构建顺序:调整构建流程,确保先构建formula-parser,然后是core,最后是react模块,形成清晰的依赖链。
-
清理手动代码:移除了grammar-parser.js中一些手动插入的代码片段,特别是与NUMONLY规则相关的条件判断逻辑。
-
完整重建流程:在应用修复后,需要先执行yarn命令重新构建formula-parser模块,然后再执行整体构建。
技术细节
在grammar-parser.js文件中,团队移除了以下关键代码段:
const stackLen = stackCache.length
if (rules[i] === 8 && match[0].match(NUMONLY) && !(match.input.slice(match[0].length)[0] === ":" || (stackLen > 3 && stackCache[stackLen - 4] === 25 && stackCache[stackLen - 2] === 27))) {
match = false;
continue;
}
这段代码原本用于处理特定条件下的数字匹配逻辑,但在新版本中可能已经不再需要,或者其功能已被其他方式实现。
经验总结
-
模块化项目的构建顺序至关重要,特别是当模块间存在依赖关系时,必须确保依赖模块先于使用模块构建。
-
手动修改需谨慎:对于自动生成的代码文件(如语法解析器),手动修改可能会在升级时带来兼容性问题,应当尽量通过配置或扩展点来实现定制需求。
-
构建环境清理:在解决构建问题时,完整的清理和重建往往是必要的,可以避免缓存带来的干扰。
-
持续集成验证:CI系统的及时反馈帮助团队快速发现了这一问题,体现了自动化测试和构建流程的价值。
通过这次事件,Fortune-Sheet项目团队进一步完善了构建流程和模块管理规范,为未来的开发和维护工作打下了更坚实的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00