Fortune-Sheet 项目中公式解析器升级引发的构建问题分析
问题背景
在Fortune-Sheet项目最近的开发中,团队对公式解析器(formula-parser)进行了升级。这一变更在合并后导致了项目的构建过程(yarn build)失败。构建系统报出了一个导入错误,尽管实际上被导入的属性确实存在于导出模块中。
问题表现
构建失败的具体表现为:
- 在CI/CD流水线中,构建作业(8967287069)执行失败
- 错误类型为导入错误(import error)
- 表面现象是系统认为某个属性未被导出,但实际上该属性确实存在于导出模块中
问题根源
经过开发团队分析,问题主要源于以下几个方面:
-
构建顺序问题:项目中的各个模块(formula-parser、core、react)之间存在依赖关系,但构建顺序没有明确规划,导致依赖关系混乱。
-
手动修改残留:在公式解析器的grammar-parser.js文件中,存在一些手动插入的代码片段,这些片段在升级过程中可能与新版本产生了冲突。
-
缓存问题:本地开发环境中可能存在旧的构建缓存,导致开发者无法立即看到修复后的效果。
解决方案
团队采取了以下措施解决该问题:
-
明确构建顺序:调整构建流程,确保先构建formula-parser,然后是core,最后是react模块,形成清晰的依赖链。
-
清理手动代码:移除了grammar-parser.js中一些手动插入的代码片段,特别是与NUMONLY规则相关的条件判断逻辑。
-
完整重建流程:在应用修复后,需要先执行yarn命令重新构建formula-parser模块,然后再执行整体构建。
技术细节
在grammar-parser.js文件中,团队移除了以下关键代码段:
const stackLen = stackCache.length
if (rules[i] === 8 && match[0].match(NUMONLY) && !(match.input.slice(match[0].length)[0] === ":" || (stackLen > 3 && stackCache[stackLen - 4] === 25 && stackCache[stackLen - 2] === 27))) {
match = false;
continue;
}
这段代码原本用于处理特定条件下的数字匹配逻辑,但在新版本中可能已经不再需要,或者其功能已被其他方式实现。
经验总结
-
模块化项目的构建顺序至关重要,特别是当模块间存在依赖关系时,必须确保依赖模块先于使用模块构建。
-
手动修改需谨慎:对于自动生成的代码文件(如语法解析器),手动修改可能会在升级时带来兼容性问题,应当尽量通过配置或扩展点来实现定制需求。
-
构建环境清理:在解决构建问题时,完整的清理和重建往往是必要的,可以避免缓存带来的干扰。
-
持续集成验证:CI系统的及时反馈帮助团队快速发现了这一问题,体现了自动化测试和构建流程的价值。
通过这次事件,Fortune-Sheet项目团队进一步完善了构建流程和模块管理规范,为未来的开发和维护工作打下了更坚实的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00